版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省蘭州市七里河區(qū)蘭州五十五中2025屆高一數(shù)學第一學期期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則的值為A. B.C.2 D.32.在中,,則等于A. B.C. D.3.若,,,則的大小關系為()A. B.C. D.4.已知在定義域上是減函數(shù),且,則的取值范圍為()A.(0,1) B.(-2,1)C.(0,) D.(0,2)5.已知,則()A. B.7C. D.16.空間直角坐標系中,點關于平面的對稱點為點,關于原點的對稱點為點,則間的距離為A. B.C. D.7.設則()A. B.C. D.8.若,求()A. B.C. D.9.如果全集,,,則A. B.C. D.10.在正方體中,異面直線與所成的角為()A.30° B.45°C.60° D.90°二、填空題:本大題共6小題,每小題5分,共30分。11.已知是偶函數(shù),且方程有五個解,則這五個解之和為______12.親愛的考生,我們數(shù)學考試完整的時間是2小時,則從考試開始到結束,鐘表的分針轉過的弧度數(shù)為___________.13.集合,用列舉法可以表示為_________14.已知(其中且為常數(shù))有兩個零點,則實數(shù)的取值范圍是___________.15.__________.16.若函數(shù)在區(qū)間內為減函數(shù),則實數(shù)a的取值范圍為___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知A(1,1)和圓C:(x+2)2+(y﹣2)2=1,一束光線從A發(fā)出,經(jīng)x軸反射后到達圓C(1)求光線所走過的最短路徑長;(2)若P為圓C上任意一點,求x2+y2﹣2x﹣4y的最大值和最小值18.某中學有初中學生1800人,高中學生1200人,為了解全校學生本學期開學以來(60天)的課外閱讀時間,學校采用分層抽樣方法,從中抽取100名學生進行問卷調查.將樣本中的“初中學生”和“高中學生”按學生的課外閱讀時間(單位:時)各分為5組[0,10)、[10,20)、[20,30)、[30,40)、[40,50],得到頻率分布直方圖如圖所示.(1)估計全校學生中課外閱讀時間在[30,40)小時內的總人數(shù)是多少;(2)從課外閱讀時間不足10小時的樣本學生中隨機抽取3人,求至少有2個初中生的概率;(3)國家規(guī)定,初中學生平均每人每天課外閱讀時間不少于半個小時.若該校初中學生課外閱讀時間小于國家標準,則學校應適當增加課外閱讀時間,根據(jù)以上抽樣調查數(shù)據(jù),該校是否需要增加初中學生的課外閱讀時間?并說明理由.19.化簡下列各式:(1);(2).20.為適應新冠肺炎疫情長期存在的新形勢,打好疫情防控的主動仗,某學校大力普及科學防疫知識,現(xiàn)需要在2名女生、3名男生中任選2人擔任防疫宣講主持人,每位同學當選的機會是相同的.(1)寫出試驗的樣本空間,并求當選的2名同學中恰有1名女生的概率;(2)求當選的2名同學中至少有1名男生的概率.21.已知二次函數(shù),且是函數(shù)的零點.(1)求解析式,并解不等式;(2)若,求函數(shù)的值域
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】利用同角三角函數(shù)的基本關系,把要求值的式子化為,即可得到答案.【詳解】由題意,因為,所以,故選A【點睛】本題主要考查了三角函數(shù)的化簡求值問題,其中解答中熟記三角恒等變換的公式,合理化簡、運算是解答的關鍵,著重考查了運算與求解能力.2、C【解析】分析:利用兩角和的正切公式,求出的三角函數(shù)值,求出的大小,然后求出的值即可詳解:由,則,因為位三角形的內角,所以,所以,故選C點睛:本題主要考查了兩角和的正切函數(shù)的應用,解答中注意公式的靈活運用以及三角形內角定理的應用,著重考查了推理與計算能力3、A【解析】由指數(shù)函數(shù)的單調性可知,由對數(shù)函數(shù)的單調性可知,化簡,進而比較大小即可【詳解】因為在上是增函數(shù),所以;在上是增函數(shù),所以;,所以,故選:A【點睛】本題考查指數(shù)、對數(shù)比較大小問題,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調性的應用4、A【解析】根據(jù)函數(shù)的單調性進行求解即可.【詳解】因為在定義域上是減函數(shù),所以由,故選:A5、A【解析】利用表示,代入求值.【詳解】,即,.故選:A6、C【解析】分析:求出點關于平面的對稱點,關于原點的對稱點,直接利用空間中兩點間的距離公式,即可求解結果.詳解:在空間直角坐標系中,點關于平面的對稱點,關于原點的對稱點,則間的距離為,故選C.點睛:本題主要考查了空間直角坐標系中點的表示,以及空間中兩點間的距離的計算,著重考查了推理與計算能力,屬于基礎題.7、A【解析】利用中間量隔開三個值即可.【詳解】∵,∴,又,∴,故選:A【點睛】本題考查實數(shù)大小的比較,考查指對函數(shù)的性質,屬于??碱}型.8、A【解析】根據(jù),求得,再利用指數(shù)冪及對數(shù)的運算即可得出答案.【詳解】解:因為,所以,所以.故選:A.9、A【解析】根據(jù)題意,先確定的范圍,再求出即可.【詳解】,,故選:A.【點睛】本題考查集合的運算,屬于簡單題.10、C【解析】首先由可得是異面直線和所成角,再由為正三角形即可求解.【詳解】連接因為為正方體,所以,則是異面直線和所成角.又,可得為等邊三角形,則,所以異面直線與所成角為,故選:C【點睛】本題考查異面直線所成的角,利用平行構造三角形或平行四邊形是關鍵,考查了空間想象能力和推理能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)函數(shù)的奇偶性和圖象變換,得到函數(shù)的圖象關于對稱,進而得出方程其中其中一個解為,另外四個解滿足,即可求解.【詳解】由題意,函數(shù)是偶函數(shù),可函數(shù)的圖象關于對稱,根據(jù)函數(shù)圖象的變換,可得函數(shù)的圖象關于對稱,又由方程有五個解,則其中一個解為,不妨設另外四個解分別為且,則滿足,即,所以這五個解之和為.故答案為:.12、【解析】根據(jù)角的概念的推廣即可直接求出答案.【詳解】因為鐘表的分針轉了兩圈,且是按順時針方向旋轉,所以鐘表的分針轉過的弧度數(shù)為.故答案為:.13、##【解析】根據(jù)集合元素屬性特征進行求解即可.【詳解】因為,所以,可得,因為,所以,集合故答案為:14、【解析】設,可轉化為有兩個正解,進而可得參數(shù)范圍.【詳解】設,由有兩個零點,即方程有兩個正解,所以,解得,即,故答案為:.15、1【解析】應用誘導公式化簡求值即可.【詳解】原式.故答案為:1.16、【解析】由復合函數(shù)單調性的判斷法則及對數(shù)函數(shù)的真數(shù)大于0恒成立,列出不等式組求解即可得答案.【詳解】解:因為,函數(shù)在區(qū)間內為減函數(shù),所以有,解得,所以實數(shù)a的取值范圍為,故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)最大值為11,最小值為﹣1【解析】(1)點關于x軸的對稱點在反射光線上,當反射光線從點經(jīng)軸反射到圓周的路程最短,最短為;(2)將式子化簡得到,轉化為點點距,進而轉化為圓心到的距離,加減半徑,即可求得最值.【詳解】(1)關于x軸的對稱點為,由圓C:(x+2)2+(y﹣2)2=1得圓心坐標為C(﹣2,2),∴,即光線所走過的最短路徑長為;(2)x2+y2﹣2x﹣4y=(x﹣1)2+(y﹣2)2﹣5(x﹣1)2+(y﹣2)2表示圓C上一點P(x,y)到點(1,2)的距離的平方,由題意,得,因此,x2+y2﹣2x﹣4y的最大值為11,最小值為﹣1【點睛】本題考查最短路徑問題,以及圓外一點到圓上一點的距離的最值問題,屬于基礎題;求最短路徑時作對稱點,由兩點之間線段最短的原理確定長度,將圓外一點距離的最值轉化為點到圓心的距離和半徑之間的關系.18、(1)720人(2)(3)需要增加,理由見解析【解析】(1)由分層抽樣的特點可分別求得抽取的初中生、高中生人數(shù),由頻率分布直方圖的性質可知初中生、高中生課外閱讀時間在,小時內的頻率,然后由頻數(shù)樣本容量頻率可分別得初中生、高中生課外閱讀時間在,小時內的樣本學生數(shù),最后將兩者相加即可(2)記“從閱讀時間不足10個小時的樣本學生中隨機抽取3人,至少有2個初中生”為事件,由頻數(shù)樣本容量頻率組距頻率可分別得初中生、高中生中,閱讀時間不足10個小時的學生人數(shù),然后用列舉法表示出隨機抽取3人的所有可能結果以及事件的結果,從而得(3)同一組中的數(shù)據(jù)用該組區(qū)間中點值作為代表來計算樣本中的所有初中生平均每天閱讀時間,并與30小時比較大小,若小于30小時,則需要增加,否則不需要增加【小問1詳解】由分層抽樣知,抽取的初中生有人,高中生有人初中生中,課外閱讀時間在,小時內的頻率為:,學生人數(shù)為人高中生中,課外閱讀時間在,小時內的頻率為:,學生人數(shù)約有人,全校學生中課外閱讀時間在,小時內學生總人數(shù)為人【小問2詳解】記“從閱讀時間不足10個小時的樣本學生中隨機抽取3人,至少有2個初中生”為事件,初中生中,閱讀時間不足10個小時的學生人數(shù)為人,高中生中,閱讀時間不足10個小時的學生人數(shù)為人記這3名初中生為,,,這2名高中生為,,則從閱讀時間不足10個小時的樣本學生中隨機抽取3人,所有可能結果共有10種,即,,,,,,,,,,而事件結果有7種,它們是:,,,,,,,至少抽到2名初中生的概率為【小問3詳解】樣本中的所有初中生平均每天閱讀時間為:(小時),而(小時),,該校需要增加初中學生課外閱讀時間19、(1)0(2)1【解析】(1)由誘導公式化簡計算;(2)由誘導公式化簡即可得解【小問1詳解】;【小問2詳解】20、(1)樣本空間答案見解析,概率是(2)【解析】(1)將2名女生,3名男生分別用a,b;c,d,e表示,即可列出樣本空間,再根據(jù)古典概型的概率公式計算可得;(2)設事件“當選的2名同學中至少有1名男生”,事件“當選的2名同學中全部都是女生”,事件B,C為對立事件,利用古典概型的概率公式求出,最后根據(jù)對立事件的概率公式計算可得;【小問1詳解】解:將2名女生,3名男生分別用a,b;c,d,e表示,則從5名同學中任選2名同學試驗的樣本空間為,共有10個樣本點,設事件“當選的2名同學中恰有1名女生”,則,樣本點有6個,∴.即當選的2名同學中恰有1名女生的概率是【小問2詳解】解:設事件“當選的2名同學中至少有1名男生”,事件“當選的2名同學中全部都是女生”,事件B,C為對立事件,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州鐵路職業(yè)技術學院《采礦工程》2023-2024學年第一學期期末試卷
- 2025年浙江省安全員B證(項目經(jīng)理)考試題庫
- 2025黑龍江省安全員考試題庫附答案
- 2025年-河北省安全員《B證》考試題庫
- 《電影天堂》課件
- 植物的逆境生理-課件
- 上海市初中勞技試題解析2014
- 【大學課件】國際投資的企業(yè)形式
- 《植物病原病毒》課件
- 《探析權健腫瘤醫(yī)院》課件
- 礦山隱蔽致災普查治理報告
- 零星維修工程 投標方案(技術方案)
- 護理基礎測試題+參考答案
- 副總經(jīng)理招聘面試題與參考回答(某大型國企)2024年
- 2024年SATACT家教培訓合同
- 《ESPEN重癥病人營養(yǎng)指南(2023版)》解讀課件
- 智慧茶園監(jiān)控系統(tǒng)的設計
- 2024年宜賓發(fā)展產(chǎn)城投資限公司第三批員工公開招聘高頻難、易錯點500題模擬試題附帶答案詳解
- 2024年省宿州市“宿事速辦”12345政務服務便民熱線服務中心招考15名工作人員高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 2024年安徽省行政執(zhí)法人員資格認證考試試題含答案
- 中國2型糖尿病運動治療指南 (2024版)
評論
0/150
提交評論