版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆河北省石家莊市礦區(qū)中學(xué)數(shù)學(xué)高三上期末達(dá)標(biāo)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件2.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.3.設(shè)為虛數(shù)單位,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.635.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.6.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)(即質(zhì)數(shù))的和”,如,.在不超過20的素數(shù)中,隨機選取兩個不同的數(shù),其和等于20的概率是()A. B. C. D.以上都不對7.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.178.下列選項中,說法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件9.關(guān)于函數(shù),有下列三個結(jié)論:①是的一個周期;②在上單調(diào)遞增;③的值域為.則上述結(jié)論中,正確的個數(shù)為()A. B. C. D.10.?dāng)?shù)列的通項公式為.則“”是“為遞增數(shù)列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要11.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.12.某學(xué)校組織學(xué)生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為,若低于60分的人數(shù)是18人,則該班的學(xué)生人數(shù)是()A.45 B.50 C.55 D.60二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在處的切線方程是____________.14.已知非零向量,滿足,且,則與的夾角為____________.15.已知實數(shù),滿足則的取值范圍是______.16.已知三棱錐的四個頂點都在球的球面上,,則球的表面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐的底面是菱形,底面,,分別是的中點,.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點的位置;若不存在,說明理由.18.(12分)某學(xué)校為了解全校學(xué)生的體重情況,從全校學(xué)生中隨機抽取了100人的體重數(shù)據(jù),得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.(1)估計這100人體重數(shù)據(jù)的平均值和樣本方差;(結(jié)果取整數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)(2)從全校學(xué)生中隨機抽取3名學(xué)生,記為體重在的人數(shù),求的分布列和數(shù)學(xué)期望;(3)由頻率分布直方圖可以認(rèn)為,該校學(xué)生的體重近似服從正態(tài)分布.若,則認(rèn)為該校學(xué)生的體重是正常的.試判斷該校學(xué)生的體重是否正常?并說明理由.19.(12分)已知點,且,滿足條件的點的軌跡為曲線.(1)求曲線的方程;(2)是否存在過點的直線,直線與曲線相交于兩點,直線與軸分別交于兩點,使得?若存在,求出直線的方程;若不存在,請說明理由.20.(12分)已知函數(shù),.(1)若對于任意實數(shù),恒成立,求實數(shù)的范圍;(2)當(dāng)時,是否存在實數(shù),使曲線:在點處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.21.(12分)已知函數(shù)()在定義域內(nèi)有兩個不同的極值點.(1)求實數(shù)的取值范圍;(2)若有兩個不同的極值點,,且,若不等式恒成立.求正實數(shù)的取值范圍.22.(10分)已知函數(shù)f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實數(shù)x的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)誘導(dǎo)公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導(dǎo)公式的運用,屬于基礎(chǔ)題.2、D【解析】
根據(jù)面面垂直的判定定理,對選項中的命題進(jìn)行分析、判斷正誤即可.【詳解】對于A,當(dāng),,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當(dāng),,時,則,故不能作為的充分條件,故B錯誤;對于C,當(dāng),,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當(dāng),,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎(chǔ)題.3、A【解析】
利用復(fù)數(shù)的除法運算化簡,求得對應(yīng)的坐標(biāo),由此判斷對應(yīng)點所在象限.【詳解】,對應(yīng)的點的坐標(biāo)為,位于第一象限.故選:A.【點睛】本小題主要考查復(fù)數(shù)除法運算,考查復(fù)數(shù)對應(yīng)點所在象限,屬于基礎(chǔ)題.4、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.5、D【解析】
設(shè)圓錐的母線長為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.6、A【解析】
首先確定不超過的素數(shù)的個數(shù),根據(jù)古典概型概率求解方法計算可得結(jié)果.【詳解】不超過的素數(shù)有,,,,,,,,共個,從這個素數(shù)中任選個,有種可能;其中選取的兩個數(shù),其和等于的有,,共種情況,故隨機選出兩個不同的數(shù),其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎(chǔ)題.7、C【解析】
首先根據(jù)對數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當(dāng)時,滿足,∴實數(shù)可以為8.故選:C【點睛】本題考查對數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.8、D【解析】
對于A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對于B若向量滿足,則與的夾角為鈍角或平角;對于C當(dāng)m=0時,滿足am2≤bm2,但是a≤b不一定成立;對于D根據(jù)元素與集合的關(guān)系即可做出判斷.【詳解】選項A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項C當(dāng)m=0時,滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點睛】本題考查命題的真假判斷與應(yīng)用,涉及知識點有含有量詞的命題的否定、不等式性質(zhì)、向量夾角與性質(zhì)、集合性質(zhì)等,屬于簡單題.9、B【解析】
利用三角函數(shù)的性質(zhì),逐個判斷即可求出.【詳解】①因為,所以是的一個周期,①正確;②因為,,所以在上不單調(diào)遞增,②錯誤;③因為,所以是偶函數(shù),又是的一個周期,所以可以只考慮時,的值域.當(dāng)時,,在上單調(diào)遞增,所以,的值域為,③錯誤;綜上,正確的個數(shù)只有一個,故選B.【點睛】本題主要考查三角函數(shù)的性質(zhì)應(yīng)用.10、A【解析】
根據(jù)遞增數(shù)列的特點可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關(guān)系可確定結(jié)果.【詳解】若“是遞增數(shù)列”,則,即,化簡得:,又,,,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件.故選:.【點睛】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,屬于基礎(chǔ)題.11、C【解析】
如圖所示,當(dāng)點C位于垂直于面的直徑端點時,三棱錐的體積最大,設(shè)球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.12、D【解析】
根據(jù)頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據(jù)樣本容量求出班級人數(shù).【詳解】根據(jù)頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學(xué)生人數(shù))是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應(yīng)用問題,也考查了頻率的應(yīng)用問題,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出和的值,利用點斜式可得出所求切線的方程.【詳解】,則,,.因此,函數(shù)在處的切線方程是,即.故答案為:.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程,考查計算能力,屬于基礎(chǔ)題.14、(或?qū)懗桑窘馕觥?/p>
設(shè)與的夾角為,通過,可得,化簡整理可求出,從而得到答案.【詳解】設(shè)與的夾角為可得,故,將代入可得得到,于是與的夾角為.故答案為:.【點睛】本題主要考查向量的數(shù)量積運算,向量垂直轉(zhuǎn)化為數(shù)量積為0是解決本題的關(guān)鍵,意在考查學(xué)生的轉(zhuǎn)化能力,分析能力及計算能力.15、【解析】
根據(jù)約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個位置為的臨界位置,根據(jù)幾何關(guān)系可得與軸的兩個交點分別為,所以的取值范圍為.故答案為:【點睛】本題考查了非線性約束條件下線性規(guī)劃的簡單應(yīng)用,由數(shù)形結(jié)合法求線性目標(biāo)函數(shù)的取值范圍,屬于中檔題.16、【解析】
如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,計算得到,得到答案.【詳解】如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點睛】本題考查了三棱錐的外接球問題,意在考查學(xué)生的計算能力和空間想象能力,將三棱錐補成長方體是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析.【解析】
(Ⅰ)由題意結(jié)合幾何關(guān)系可證得平面,據(jù)此證明題中的結(jié)論即可;(Ⅱ)建立空間直角坐標(biāo)系,求得直線的方向向量與平面的一個法向量,然后求解線面角的正弦值即可;(Ⅲ)假設(shè)滿足題意的點存在,設(shè),由直線與的方向向量得到關(guān)于的方程,解方程即可確定點F的位置.【詳解】(Ⅰ)由菱形的性質(zhì)可得:,結(jié)合三角形中位線的性質(zhì)可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由題意結(jié)合菱形的性質(zhì)易知,,,以點O為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則:,設(shè)平面的一個法向量為,則:,據(jù)此可得平面的一個法向量為,而,設(shè)直線與平面所成角為,則.(Ⅲ)由題意可得:,假設(shè)滿足題意的點存在,設(shè),,據(jù)此可得:,即:,從而點F的坐標(biāo)為,據(jù)此可得:,,結(jié)合題意有:,解得:.故點F為中點時滿足題意.【點睛】本題主要考查線面垂直的判定定理與性質(zhì)定理,線面角的向量求法,立體幾何中的探索性問題等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.18、(1)60;25(2)見解析,2.1(3)可以認(rèn)為該校學(xué)生的體重是正常的.見解析【解析】
(1)根據(jù)頻率分布直方圖可求出平均值和樣本方差;(2)由題意知服從二項分布,分別求出,,,,進(jìn)而可求出分布列以及數(shù)學(xué)期望;(3)由第一問可知服從正態(tài)分布,繼而可求出的值,從而可判斷.【詳解】解:(1)(2)由已知可得從全校學(xué)生中隨機抽取1人,體重在的概率為0.7.隨機拍取3人,相當(dāng)于3次獨立重復(fù)實驗,隨機交量服從二項分布,則,,,,所以的分布列為:01230.0270.1890.4410.343數(shù)學(xué)期望(3)由題意知服從正態(tài)分布,則,所以可以認(rèn)為該校學(xué)生的體重是正常的.【點睛】本題考查了由頻率分布直方圖求進(jìn)行數(shù)據(jù)估計,考查了二項分布,考查了正態(tài)分布.注意,統(tǒng)計類問題,如果題目中沒有特殊說明,則求出數(shù)據(jù)的精度和題目中數(shù)據(jù)的小數(shù)后位數(shù)相同.19、(1)(2)存在,或.【解析】
(1)由得看成到兩定點的和為定值,滿足橢圓定義,用定義可解曲線的方程.(2)先討論斜率不存在情況是否符合題意,當(dāng)直線的斜率存在時,設(shè)直線點斜式方程,由,可得,再直線與橢圓聯(lián)解,利用根的判別式得到關(guān)于的一元二次方程求解.【詳解】解:設(shè),由,,可得,即為,由,可得的軌跡是以為焦點,且的橢圓,由,可得,可得曲線的方程為;假設(shè)存在過點的直線l符合題意.當(dāng)直線的斜率不存在,設(shè)方程為,可得為短軸的兩個端點,不成立;當(dāng)直線的斜率存在時,設(shè)方程為,由,可得,即,可得,化為,由可得,由在橢圓內(nèi),可得直線與橢圓相交,,則化為,即為,解得,所以存在直線符合題意,且方程為或.【點睛】本題考查求軌跡方程及直線與圓錐曲線位置關(guān)系問題.(1)定義法求軌跡方程的思路:應(yīng)用定義法求軌跡方程的關(guān)鍵在于由已知條件推出關(guān)于動點的等量關(guān)系式,由等量關(guān)系結(jié)合曲線定義判斷是何種曲線,再設(shè)出標(biāo)準(zhǔn)方程,用待定系數(shù)法求解;(2)解決是否存在直線的問題時,可依據(jù)條件尋找適合條件的直線方程,聯(lián)立方程消元得出一元二次方程,利用判別式得出是否有解.20、(1);(2)不存在實數(shù),使曲線在點處的切線與軸垂直.【解析】
(1)分類時,恒成立,時,分離參數(shù)為,引入新函數(shù),利用導(dǎo)數(shù)求得函數(shù)最值即可;(2),導(dǎo)出導(dǎo)函數(shù),問題轉(zhuǎn)化為在上有解.再用導(dǎo)數(shù)研究的性質(zhì)可得.【詳解】解:(1)因為當(dāng)時,恒成立,所以,若,為任意實數(shù),恒成立.若,恒成立,即當(dāng)時,,設(shè),,當(dāng)時,,則在上單調(diào)遞增
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)語文經(jīng)典美文千山筆記
- 2024二手房購房定金合同范本二手房購房合同范本
- 2024賒欠買賣貨物合同樣書
- 2024裝飾維修合同范本
- 2024《電大合同法網(wǎng)考》
- 2024理財合同可信范文
- 深圳大學(xué)《中國音樂史(中國流行音樂史)》2021-2022學(xué)年第一學(xué)期期末試卷
- 深圳大學(xué)《醫(yī)學(xué)統(tǒng)計學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 殯葬用品銷售合同(2篇)
- 騎車轉(zhuǎn)讓買賣協(xié)議書(2篇)
- DLT 5434-電力建設(shè)工程監(jiān)理規(guī)范表格-
- 國標(biāo)導(dǎo)地線型號
- 特大橋雙線矩形空心橋臺施工方案
- 公務(wù)員申論答題標(biāo)準(zhǔn)格子紙版A4打印版
- 第六章休閑體育產(chǎn)業(yè)PPT課件
- 道路水穩(wěn)層施工方案(完整版)
- 匹茲堡睡眠質(zhì)量指數(shù)(psqi)表格
- 5、火災(zāi)事故桌面演練記錄表
- 《甲基化與腫瘤》PPT課件.ppt
- 行政法對憲法實施的作用探討
- BIM等信息技術(shù)的使用
評論
0/150
提交評論