版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年湖北省部分高中重點中學高三下學期練習(二)數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設為虛數(shù)單位,復數(shù),則實數(shù)的值是()A.1 B.-1 C.0 D.22.如圖是計算值的一個程序框圖,其中判斷框內(nèi)應填入的條件是()A.B.C.D.3.如圖是一個算法流程圖,則輸出的結果是()A. B. C. D.4.已知平面向量滿足與的夾角為,且,則實數(shù)的值為()A. B. C. D.5.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.326.已知全集,集合,則()A. B. C. D.7.在原點附近的部分圖象大概是()A. B.C. D.8.定義域為R的偶函數(shù)滿足任意,有,且當時,.若函數(shù)至少有三個零點,則的取值范圍是()A. B. C. D.9.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學家、數(shù)學家和物理學家,他和高斯、牛頓并列被稱為世界三大數(shù)學家.據(jù)說,他自己覺得最為滿意的一個數(shù)學發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個結論,要求后人在他的墓碑上刻著一個圓柱容器里放了一個球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.10.函數(shù)的圖象大致是()A. B.C. D.11.設,是非零向量,若對于任意的,都有成立,則A. B. C. D.12.已知拋物線上一點到焦點的距離為,分別為拋物線與圓上的動點,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量、的夾角為,且,則的最大值是_____.14.已知實數(shù)滿約束條件,則的最大值為___________.15.某校初三年級共有名女生,為了了解初三女生分鐘“仰臥起坐”項目訓練情況,統(tǒng)計了所有女生分鐘“仰臥起坐”測試數(shù)據(jù)(單位:個),并繪制了如下頻率分布直方圖,則分鐘至少能做到個仰臥起坐的初三女生有_____________個.16.設為數(shù)列的前項和,若,則____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)選修4-4:坐標系與參數(shù)方程:在平面直角坐標系中,曲線:(為參數(shù)),在以平面直角坐標系的原點為極點、軸的正半軸為極軸,且與平面直角坐標系取相同單位長度的極坐標系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標方程;(2)若曲線上恰好存在三個不同的點到曲線的距離相等,求這三個點的極坐標.18.(12分)已知函數(shù).(1)當時,試求曲線在點處的切線;(2)試討論函數(shù)的單調(diào)區(qū)間.19.(12分)隨著時代的發(fā)展,A城市的競爭力、影響力日益卓著,這座創(chuàng)新引領型城市有望踏上向“全球城市”發(fā)起“沖擊”的新征程.A城市的活力與包容無不吸引著無數(shù)懷揣夢想的年輕人前來發(fā)展,目前A城市的常住人口大約為1300萬.近日,某報社記者作了有關“你來A城市發(fā)展的理由”的調(diào)查問卷,參與調(diào)查的對象年齡層次在25~44歲之間.收集到的相關數(shù)據(jù)如下:來A城市發(fā)展的理由人數(shù)合計自然環(huán)境1.森林城市,空氣清新2003002.降水充足,氣候怡人100人文環(huán)境3.城市服務到位1507004.創(chuàng)業(yè)氛圍好3005.開放且包容250合計10001000(1)根據(jù)以上數(shù)據(jù),預測400萬25~44歲年齡的人中,選擇“創(chuàng)業(yè)氛圍好”來A城市發(fā)展的有多少人;(2)從所抽取選擇“自然環(huán)境”作為來A城市發(fā)展的理由的300人中,利用分層抽樣的方法抽取6人,從這6人中再選取3人發(fā)放紀念品.求選出的3人中至少有2人選擇“森林城市,空氣清新”的概率;(3)在選擇“自然環(huán)境”作為來A城市發(fā)展的理由的300人中有100名男性;在選擇“人文環(huán)境”作為來A城市發(fā)展的理由的700人中有400名男性;請?zhí)顚懴旅媪新?lián)表,并判斷是否有的把握認為性別與“自然環(huán)境”或“人文環(huán)境”的選擇有關?自然環(huán)境人文環(huán)境合計男女合計附:,.P()0.0500.0100.001k3.8416.63510.82820.(12分)《山東省高考改革試點方案》規(guī)定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學等六門選考科目構成.將每門選考科目的考生原始成績從高到低劃分為、、、、、、、共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為、、、、、、、.選考科目成績計入考生總成績時,將至等級內(nèi)的考生原始成績,依照等比例轉換法則,分別轉換到、、、、、、、八個分數(shù)區(qū)間,得到考生的等級成績.某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布.(1)求物理原始成績在區(qū)間的人數(shù);(2)按高考改革方案,若從全省考生中隨機抽取3人,記表示這3人中等級成績在區(qū)間的人數(shù),求的分布列和數(shù)學期望.(附:若隨機變量,則,,)21.(12分)設數(shù)列是公差不為零的等差數(shù)列,其前項和為,,若,,成等比數(shù)列.(1)求及;(2)設,設數(shù)列的前項和,證明:.22.(10分)某保險公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險,現(xiàn)從名參保人員中隨機抽取名作為樣本進行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應交納的保費如下表所示.據(jù)統(tǒng)計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.年齡(單位:歲)保費(單位:元)(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數(shù)時的最小值;(2)經(jīng)調(diào)查,年齡在之間的老人每人中有人患該項疾病(以此頻率作為概率).該病的治療費為元,如果參保,保險公司補貼治療費元.某老人年齡歲,若購買該項保險(取中的).針對此疾病所支付的費用為元;若沒有購買該項保險,針對此疾病所支付的費用為元.試比較和的期望值大小,并判斷該老人購買此項保險是否劃算?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據(jù)復數(shù)的乘法運算化簡,由復數(shù)的意義即可求得的值.【詳解】復數(shù),由復數(shù)乘法運算化簡可得,所以由復數(shù)定義可知,解得,故選:A.【點睛】本題考查了復數(shù)的乘法運算,復數(shù)的意義,屬于基礎題.2.B【解析】
根據(jù)計算結果,可知該循環(huán)結構循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進而可得判斷框內(nèi)的不等式.【詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應為或所以選C【點睛】本題考查了程序框圖的簡單應用,根據(jù)結果填寫判斷框,屬于基礎題.3.A【解析】
執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結果,故選A.【點睛】本題主要考查了循環(huán)結構的程序框圖的結果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán)是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.4.D【解析】
由已知可得,結合向量數(shù)量積的運算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點睛】本題考查向量的數(shù)量積運算,向量垂直的應用,考查計算求解能力,屬于基礎題.5.A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.6.D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補集和交集定義可求得結果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數(shù)定義域的求解,屬于基礎題.7.A【解析】
分析函數(shù)的奇偶性,以及該函數(shù)在區(qū)間上的函數(shù)值符號,結合排除法可得出正確選項.【詳解】令,可得,即函數(shù)的定義域為,定義域關于原點對稱,,則函數(shù)為奇函數(shù),排除C、D選項;當時,,,則,排除B選項.故選:A.【點睛】本題考查利用函數(shù)解析式選擇函數(shù)圖象,一般要分析函數(shù)的定義域、奇偶性、單調(diào)性、零點以及函數(shù)值符號,考查分析問題和解決問題的能力,屬于中等題.8.B【解析】
由題意可得的周期為,當時,,令,則的圖像和的圖像至少有個交點,畫出圖像,數(shù)形結合,根據(jù),求得的取值范圍.【詳解】是定義域為R的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當時,,當,當,作出圖像,如下圖所示:函數(shù)至少有三個零點,則的圖像和的圖像至少有個交點,,若,的圖像和的圖像只有1個交點,不合題意,所以,的圖像和的圖像至少有個交點,則有,即,.故選:B.【點睛】本題考查函數(shù)周期性及其應用,解題過程中用到了數(shù)形結合方法,這也是高考常考的熱點問題,屬于中檔題.9.C【解析】
設球的半徑為R,根據(jù)組合體的關系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點睛】本題主要考查組合體的表面積和體積,還考查了對數(shù)學史了解,屬于基礎題.10.B【解析】
根據(jù)函數(shù)表達式,把分母設為新函數(shù),首先計算函數(shù)定義域,然后求導,根據(jù)導函數(shù)的正負判斷函數(shù)單調(diào)性,對應函數(shù)圖像得到答案.【詳解】設,,則的定義域為.,當,,單增,當,,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運算,同學們還可以用特殊值法等方法進行判斷.11.D【解析】
畫出,,根據(jù)向量的加減法,分別畫出的幾種情況,由數(shù)形結合可得結果.【詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當,即時,最小,滿足,對于任意的,所以本題答案為D.【點睛】本題主要考查了空間向量的加減法,以及點到直線的距離最短問題,解題的關鍵在于用有向線段正確表示向量,屬于基礎題.12.D【解析】
利用拋物線的定義,求得p的值,由利用兩點間距離公式求得,根據(jù)二次函數(shù)的性質(zhì),求得,由取得最小值為,求得結果.【詳解】由拋物線焦點在軸上,準線方程,則點到焦點的距離為,則,所以拋物線方程:,設,圓,圓心為,半徑為1,則,當時,取得最小值,最小值為,故選D.【點睛】該題考查的是有關距離的最小值問題,涉及到的知識點有拋物線的定義,點到圓上的點的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
建立平面直角坐標系,設,可得,進而可得出,,由此將轉化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結果.【詳解】根據(jù)題意建立平面直角坐標系如圖所示,設,,以、為鄰邊作平行四邊形,則,設,則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當時,取最大值.故答案為:.【點睛】本題考查了向量的數(shù)量積最值的計算,將問題轉化為角的三角函數(shù)的最值問題是解答的關鍵,考查計算能力,屬于難題.14.8【解析】
畫出可行域和目標函數(shù),根據(jù)平移計算得到答案.【詳解】根據(jù)約束條件,畫出可行域,圖中陰影部分為可行域.又目標函數(shù)表示直線在軸上的截距,由圖可知當經(jīng)過點時截距最大,故的最大值為8.故答案為:.【點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關鍵.15.【解析】
根據(jù)數(shù)據(jù)先求出,再求出分鐘至少能做到個仰臥起坐的初三女生人數(shù)即可.【詳解】解:,.則分鐘至少能做到個仰臥起坐的初三女生人數(shù)為.故答案為:.【點睛】本題主要考查頻率分布直方圖,屬于基礎題.16.【解析】
當時,由,解得,當時,,兩式相減可得,即,可得數(shù)列是等比數(shù)列再求通項公式.【詳解】當時,,即,當時,,兩式相減可得,即,即,故數(shù)列是以為首項,為公比的等比數(shù)列,所以.故答案為:【點睛】本題考查數(shù)列的前項和與通項公式的關系,還考查運算求解能力以及化歸與轉化思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2),,.【解析】
(1)把曲線的參數(shù)方程與曲線的極坐標方程分別轉化為直角坐標方程;(2)利用圖象求出三個點的極徑與極角.【詳解】解:(1)由消去參數(shù)得,即曲線的普通方程為,又由得即為,即曲線的平面直角坐標方程為(2)∵圓心到曲線:的距離,如圖所示,所以直線與圓的切點以及直線與圓的兩個交點,即為所求.∵,則,直線的傾斜角為,即點的極角為,所以點的極角為,點的極角為,所以三個點的極坐標為,,.【點睛】本題考查圓的參數(shù)方程和普通方程的轉化、直線極坐標方程和直角坐標方程的轉化,消去參數(shù)方程中的參數(shù),就可把參數(shù)方程化為普通方程,消去參數(shù)的常用方法有:①代入消元法;②加減消元法;③乘除消元法;④三角恒等式消元法,極坐標方程化為直角坐標方程,只要將和換成和即可.18.(1);(2)見解析【解析】
(1)對函數(shù)進行求導,可以求出曲線在點處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對函數(shù)進行求導,對實數(shù)進行分類討論,可以求出函數(shù)的單調(diào)區(qū)間.【詳解】(1)當時,函數(shù)定義域為,,所以切線方程為;(2)當時,函數(shù)定義域為,在上單調(diào)遞增當時,恒成立,函數(shù)定義域為,又在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增當時,函數(shù)定義域為,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增當時,設的兩個根為且,由韋達定理易知兩根均為正根,且,所以函數(shù)的定義域為,又對稱軸,且,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增【點睛】本題考查了曲線切線方程的求法,考查了利用函數(shù)的導數(shù)討論函數(shù)的單調(diào)性問題,考查了分類思想.19.(1)(萬)(2)(3)填表見解析;有的把握認為性別與“自然環(huán)境”或“人文環(huán)境”的選擇有關【解析】
(1)在1000個樣本中選擇“創(chuàng)業(yè)氛圍好”來A城市發(fā)展的有300個,根據(jù)頻率公式即可求得結果.(2)由分層抽樣的知識可得,抽取6人中,4人選擇“森林城市,空氣清新”,2人選擇“降水充足,氣候怡人”求出對應的基本事件數(shù),即可求得結果.(3)計算的值,對照臨界值表可得答案.【詳解】(1)(萬)(2)從所抽取選擇“自然環(huán)境”作為來A城市發(fā)展理由的300人中,利用分層抽樣的方法抽取6人,其中4人是選擇“森林城市,空氣清新”,2人是選擇“降水充足,氣候怡人”.記事件A為選出的3人中至少有2人選擇“森林城市,空氣清新”,則,.(3)列聯(lián)表如下自然環(huán)境人文環(huán)境合計男100400500女200300500合計3007001000,所以有的把握認為性別與“自然環(huán)境”或“人文環(huán)境”的選擇有關.【點睛】本題主要考查獨立性檢測的相關知識、分層抽樣與古典概念計算概率、考查學生的綜合分析與計算能力,難度較易.20.(Ⅰ)1636人;(Ⅱ)見解析.【解析】
(Ⅰ)根據(jù)正態(tài)曲線的對稱性,可將區(qū)間分為和兩種情況,然后根據(jù)特殊區(qū)間上的概率求出成績在區(qū)間內(nèi)的概率,進而可求出相應的人數(shù);(Ⅱ)由題意得成績在區(qū)間[61,80]的概率為,且,由此可得的分布列和數(shù)學期望.【詳解】(Ⅰ)因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 營養(yǎng)師二級理論考核試題
- 小學生考前安全教育
- 2025勞動合同法規(guī)定工作時間
- 小兒靜脈留置針
- 商標許可使用合同
- 吉林省八校聯(lián)考2024-2025學年高二上學期1月期末考試數(shù)學試題 含解析
- 重慶江北組團發(fā)展方向
- 建筑施工管理提升
- 2025常用版勞動合同范本
- 2025林地轉讓合同書范文
- GB/T 45102-2024機采棉采收技術要求
- 2025年海南省鹽業(yè)集團有限公司招聘筆試參考題庫含答案解析
- 2024-2025學年成都市高一上英語期末考試題(含答案和音頻)
- 2024年南通職業(yè)大學單招職業(yè)技能測試題庫有答案解析
- 2024股權融資計劃
- 西式面點師試題與答案
- 鋼結構連廊專項吊裝方案(通過專家論證)
- 50MWp漁光互補光伏電站項目錘樁施工方案
- 2025免疫規(guī)劃工作計劃
- 初二家長會課件下載
- 食品安全知識培訓
評論
0/150
提交評論