版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆吉林省吉林市普通中學(xué)第二學(xué)期期末高三聯(lián)考數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知正三角形的邊長(zhǎng)為2,為邊的中點(diǎn),、分別為邊、上的動(dòng)點(diǎn),并滿(mǎn)足,則的取值范圍是()A. B. C. D.2.已知直線(xiàn)和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要3.某人造地球衛(wèi)星的運(yùn)行軌道是以地心為一個(gè)焦點(diǎn)的橢圓,其軌道的離心率為,設(shè)地球半徑為,該衛(wèi)星近地點(diǎn)離地面的距離為,則該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離為()A. B.C. D.4.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.5.?dāng)?shù)列滿(mǎn)足,且,,則()A. B.9 C. D.76.已知實(shí)數(shù)滿(mǎn)足約束條件,則的最小值為()A.-5 B.2 C.7 D.117.已知,函數(shù)在區(qū)間內(nèi)沒(méi)有最值,給出下列四個(gè)結(jié)論:①在上單調(diào)遞增;②③在上沒(méi)有零點(diǎn);④在上只有一個(gè)零點(diǎn).其中所有正確結(jié)論的編號(hào)是()A.②④ B.①③ C.②③ D.①②④8.已知,則()A. B. C. D.9.若實(shí)數(shù)滿(mǎn)足的約束條件,則的取值范圍是()A. B. C. D.10.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.1611.設(shè)a,b都是不等于1的正數(shù),則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件12.已知是邊長(zhǎng)為1的等邊三角形,點(diǎn),分別是邊,的中點(diǎn),連接并延長(zhǎng)到點(diǎn),使得,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實(shí)數(shù),滿(mǎn)足,則的最小值為_(kāi)_________.14.雙曲線(xiàn)的離心率為_(kāi)________.15.已知是定義在上的偶函數(shù),其導(dǎo)函數(shù)為.若時(shí),,則不等式的解集是___________.16.雙曲線(xiàn)的左焦點(diǎn)為,點(diǎn),點(diǎn)P為雙曲線(xiàn)右支上的動(dòng)點(diǎn),且周長(zhǎng)的最小值為8,則雙曲線(xiàn)的實(shí)軸長(zhǎng)為_(kāi)_______,離心率為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)若,求曲線(xiàn)在處的切線(xiàn)方程;(Ⅱ)當(dāng)時(shí),要使恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知橢圓的離心率為,且以原點(diǎn)O為圓心,橢圓C的長(zhǎng)半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知?jiǎng)又本€(xiàn)l過(guò)右焦點(diǎn)F,且與橢圓C交于A、B兩點(diǎn),已知Q點(diǎn)坐標(biāo)為,求的值.19.(12分)在世界讀書(shū)日期間,某地區(qū)調(diào)查組對(duì)居民閱讀情況進(jìn)行了調(diào)查,獲得了一個(gè)容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫(xiě)下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān)?城鎮(zhèn)居民農(nóng)村居民合計(jì)經(jīng)常閱讀10030不經(jīng)常閱讀合計(jì)200(2)調(diào)查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出7人,參加一次閱讀交流活動(dòng),若活動(dòng)主辦方從這7位居民中隨機(jī)選取2人作交流發(fā)言,求被選中的2位居民都是經(jīng)常閱讀居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82820.(12分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅(jiān)持開(kāi)展愛(ài)國(guó)衛(wèi)生運(yùn)動(dòng),從人居環(huán)境改善、飲食習(xí)慣、社會(huì)心理健康、公共衛(wèi)生設(shè)施等多個(gè)方面開(kāi)展,特別是要堅(jiān)決杜絕食用野生動(dòng)物的陋習(xí),提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過(guò)問(wèn)卷調(diào)查,隨機(jī)收集了該區(qū)居民六類(lèi)日常生活習(xí)慣的有關(guān)數(shù)據(jù).六類(lèi)習(xí)慣是:(1)衛(wèi)生習(xí)慣狀況類(lèi);(2)垃圾處理狀況類(lèi);(3)體育鍛煉狀況類(lèi);(4)心理健康狀況類(lèi);(5)膳食合理狀況類(lèi);(6)作息規(guī)律狀況類(lèi).經(jīng)過(guò)數(shù)據(jù)整理,得到下表:衛(wèi)生習(xí)慣狀況類(lèi)垃圾處理狀況類(lèi)體育鍛煉狀況類(lèi)心理健康狀況類(lèi)膳食合理狀況類(lèi)作息規(guī)律狀況類(lèi)有效答卷份數(shù)380550330410400430習(xí)慣良好頻率0.60.90.80.70.650.6假設(shè)每份調(diào)查問(wèn)卷只調(diào)查上述六類(lèi)狀況之一,各類(lèi)調(diào)查是否達(dá)到良好標(biāo)準(zhǔn)相互獨(dú)立.(1)從小組收集的有效答卷中隨機(jī)選取1份,求這份試卷的調(diào)查結(jié)果是膳食合理狀況類(lèi)中習(xí)慣良好者的概率;(2)從該區(qū)任選一位居民,試估計(jì)他在“衛(wèi)生習(xí)慣狀況類(lèi)、體育鍛煉狀況類(lèi)、膳食合理狀況類(lèi)”三類(lèi)習(xí)慣方面,至少具備兩類(lèi)良好習(xí)慣的概率;(3)利用上述六類(lèi)習(xí)慣調(diào)查的排序,用“”表示任選一位第k類(lèi)受訪(fǎng)者是習(xí)慣良好者,“”表示任選一位第k類(lèi)受訪(fǎng)者不是習(xí)慣良好者().寫(xiě)出方差,,,,,的大小關(guān)系.21.(12分)2018年9月,臺(tái)風(fēng)“山竹”在我國(guó)多個(gè)省市登陸,造成直接經(jīng)濟(jì)損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個(gè)農(nóng)戶(hù)在該次臺(tái)風(fēng)中造成的直接經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計(jì)該地區(qū)每個(gè)農(nóng)戶(hù)的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);(2)臺(tái)風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣?huì)發(fā)出倡議,為該地區(qū)的農(nóng)戶(hù)捐款幫扶,現(xiàn)從這50戶(hù)并且損失超過(guò)4000元的農(nóng)戶(hù)中隨機(jī)抽取2戶(hù)進(jìn)行重點(diǎn)幫扶,設(shè)抽出損失超過(guò)8000元的農(nóng)戶(hù)數(shù)為,求的分布列和數(shù)學(xué)期望.22.(10分)設(shè)首項(xiàng)為1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列的前n項(xiàng)和為T(mén)n,且,其中p為常數(shù).(1)求p的值;(2)求證:數(shù)列{an}為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
建立平面直角坐標(biāo)系,求出直線(xiàn),設(shè)出點(diǎn),通過(guò),找出與的關(guān)系.通過(guò)數(shù)量積的坐標(biāo)表示,將表示成與的關(guān)系式,消元,轉(zhuǎn)化成或的二次函數(shù),利用二次函數(shù)的相關(guān)知識(shí),求出其值域,即為的取值范圍.【詳解】以D為原點(diǎn),BC所在直線(xiàn)為軸,AD所在直線(xiàn)為軸建系,設(shè),則直線(xiàn),設(shè)點(diǎn),所以由得,即,所以,由及,解得,由二次函數(shù)的圖像知,,所以的取值范圍是.故選A.【點(diǎn)睛】本題主要考查解析法在向量中的應(yīng)用,以及轉(zhuǎn)化與化歸思想的運(yùn)用.2、B【解析】
由線(xiàn)面關(guān)系可知,不能確定與平面的關(guān)系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當(dāng)時(shí),存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點(diǎn)睛】本題主要考查了必要不充分條件,線(xiàn)面垂直,線(xiàn)線(xiàn)垂直的判定,屬于中檔題.3、A【解析】
由題意畫(huà)出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長(zhǎng)半軸a,半焦距c,即可確定該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長(zhǎng)半軸),設(shè)衛(wèi)星近地點(diǎn),遠(yuǎn)地點(diǎn)離地面距離分別為r,n,如圖:則所以,,故選:A【點(diǎn)睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長(zhǎng)半軸的求法,是解題的關(guān)鍵,屬于中檔題.4、D【解析】
結(jié)合三視圖可知,該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,則上半部分的半個(gè)圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點(diǎn)睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運(yùn)算求解能力,屬于中檔題.5、A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿(mǎn)足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點(diǎn)睛】本題主要考查了等差數(shù)列的性質(zhì)和通項(xiàng)公式的求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.6、A【解析】
根據(jù)約束條件畫(huà)出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫(huà)出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線(xiàn),為在軸的截距,最小的時(shí)候?yàn)檫^(guò)點(diǎn)的時(shí)候,解得所以,此時(shí)故選A項(xiàng)【點(diǎn)睛】本題考查線(xiàn)性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡(jiǎn)單題.7、A【解析】
先根據(jù)函數(shù)在區(qū)間內(nèi)沒(méi)有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調(diào)性和零點(diǎn)情況得解.【詳解】因?yàn)楹瘮?shù)在區(qū)間內(nèi)沒(méi)有最值.所以,或解得或.又,所以.令.可得.且在上單調(diào)遞減.當(dāng)時(shí),,且,所以在上只有一個(gè)零點(diǎn).所以正確結(jié)論的編號(hào)②④故選:A.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),考查函數(shù)的零點(diǎn)問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.8、C【解析】
利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點(diǎn)睛】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意三角函數(shù)的符號(hào).9、B【解析】
根據(jù)所給不等式組,畫(huà)出不等式表示的可行域,將目標(biāo)函數(shù)化為直線(xiàn)方程,平移后即可確定取值范圍.【詳解】實(shí)數(shù)滿(mǎn)足的約束條件,畫(huà)出可行域如下圖所示:將線(xiàn)性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過(guò)原點(diǎn)時(shí)截距最小,;當(dāng)經(jīng)過(guò)時(shí),截距最大值,,所以線(xiàn)性目標(biāo)函數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查了線(xiàn)性規(guī)劃的簡(jiǎn)單應(yīng)用,線(xiàn)性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.10、C【解析】
根據(jù)正弦定理邊化角以及三角函數(shù)公式可得,再根據(jù)面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點(diǎn)睛】本題主要考查了解三角形中正余弦定理與面積公式的運(yùn)用,屬于中檔題.11、C【解析】
根據(jù)對(duì)數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì)求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點(diǎn)睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數(shù),對(duì)數(shù)不等式的解法,是基礎(chǔ)題.12、D【解析】
設(shè),,作為一個(gè)基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設(shè),,所以,,,所以.故選:D【點(diǎn)睛】本題主要考查平面向量的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由約束條件先畫(huà)出可行域,然后求目標(biāo)函數(shù)的最小值.【詳解】由約束條件先畫(huà)出可行域,如圖所示,由,即,當(dāng)平行線(xiàn)經(jīng)過(guò)點(diǎn)時(shí)取到最小值,由可得,此時(shí),所以的最小值為.故答案為.【點(diǎn)睛】本題考查了線(xiàn)性規(guī)劃的知識(shí),解題的一般步驟為先畫(huà)出可行域,然后改寫(xiě)目標(biāo)函數(shù),結(jié)合圖形求出最值,需要掌握解題方法.14、2【解析】15、【解析】
構(gòu)造,先利用定義判斷的奇偶性,再利用導(dǎo)數(shù)判斷其單調(diào)性,轉(zhuǎn)化為,結(jié)合奇偶性,單調(diào)性求解不等式即可.【詳解】令,則是上的偶函數(shù),,則在上遞減,于是在上遞增.由得,即,于是,則,解得.故答案為:【點(diǎn)睛】本題考查了利用函數(shù)的奇偶性、單調(diào)性解不等式,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.16、22【解析】
設(shè)雙曲線(xiàn)的右焦點(diǎn)為,根據(jù)周長(zhǎng)為,計(jì)算得到答案.【詳解】設(shè)雙曲線(xiàn)的右焦點(diǎn)為.周長(zhǎng)為:.當(dāng)共線(xiàn)時(shí)等號(hào)成立,故,即實(shí)軸長(zhǎng)為,.故答案為:;.【點(diǎn)睛】本題考查雙曲線(xiàn)周長(zhǎng)的最值問(wèn)題,離心率,實(shí)軸長(zhǎng),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)求函數(shù)的導(dǎo)函數(shù),即可求得切線(xiàn)的斜率,則切線(xiàn)方程得解;(Ⅱ)構(gòu)造函數(shù),對(duì)參數(shù)分類(lèi)討論,求得函數(shù)的單調(diào)性,以及最值,即可容易求得參數(shù)范圍.【詳解】(Ⅰ)當(dāng)時(shí),,則.所以.又,故所求切線(xiàn)方程為,即.(Ⅱ)依題意,得,即恒成立.令,則.①當(dāng)時(shí),因?yàn)?,不合題意.②當(dāng)時(shí),令,得,,顯然.令,得或;令,得.所以函數(shù)的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是.當(dāng)時(shí),,,所以,只需,所以,所以實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求切線(xiàn)方程,以及利用導(dǎo)數(shù)研究恒成立問(wèn)題,屬綜合中檔題.18、(1);(2).【解析】
(1)根據(jù)橢圓的離心率為,得到,根據(jù)直線(xiàn)與圓的位置關(guān)系,得到原心到直線(xiàn)的距離等于半徑,得到,從而求得,進(jìn)而求得橢圓的方程;(2)分直線(xiàn)的斜率存在是否為0與不存在三種情況討論,寫(xiě)出直線(xiàn)的方程,與橢圓方程聯(lián)立,利用韋達(dá)定理,向量的數(shù)量積,結(jié)合已知條件求得結(jié)果.【詳解】(1)由離心率為,可得,,且以原點(diǎn)O為圓心,橢圓C的長(zhǎng)半軸長(zhǎng)為半徑的圓的方程為,因與直線(xiàn)相切,則有,即,,,故而橢圓方程為.(2)①當(dāng)直線(xiàn)l的斜率不存在時(shí),,,由于;②當(dāng)直線(xiàn)l的斜率為0時(shí),,,則;③當(dāng)直線(xiàn)l的斜率不為0時(shí),設(shè)直線(xiàn)l的方程為,,,由及,得,有,∴,,,,∴,綜上所述:.【點(diǎn)睛】該題考查直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題,橢圓的標(biāo)準(zhǔn)方程,考查直線(xiàn)與橢圓的位置關(guān)系,求向量數(shù)量積,在解題的過(guò)程中,注意對(duì)直線(xiàn)方程的分類(lèi)討論,屬于中檔題目.19、(1)見(jiàn)解析,有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)【解析】
(1)根據(jù)題中數(shù)據(jù)得到列聯(lián)表,然后計(jì)算出,與臨界值表中的數(shù)據(jù)對(duì)照后可得結(jié)論;(2)由題意得概率為古典概型,根據(jù)古典概型概率公式計(jì)算可得所求.【詳解】(1)由題意可得:城鎮(zhèn)居民農(nóng)村居民合計(jì)經(jīng)常閱讀10030130不經(jīng)常閱讀403070合計(jì)14060200則,所以有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)在城鎮(zhèn)居民140人中,經(jīng)常閱讀的有100人,不經(jīng)常閱讀的有40人.采取分層抽樣抽取7人,則其中經(jīng)常閱讀的有5人,記為、、、、;不經(jīng)常閱讀的有2人,記為、.從這7人中隨機(jī)選取2人作交流發(fā)言,所有可能的情況為,,,,,,,,,,,,,,,,,,,,,共21種,被選中的位居民都是經(jīng)常閱讀居民的情況有種,所求概率為.【點(diǎn)睛】本題主要考查古典概型的概率計(jì)算,以及獨(dú)立性檢驗(yàn)的應(yīng)用,利用列舉法是解決本題的關(guān)鍵,考查學(xué)生的計(jì)算能力.對(duì)于古典概型,要求事件總數(shù)是可數(shù)的,滿(mǎn)足條件的事件個(gè)數(shù)可數(shù),使得滿(mǎn)足條件的事件個(gè)數(shù)除以總的事件個(gè)數(shù)即可,屬于中檔題.20、(1)(2)(3)【解析】
(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類(lèi)中習(xí)慣良好者“的事件為,根據(jù)古典概型求出即可;(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類(lèi)、體育鍛煉狀況類(lèi)、膳食合理狀況類(lèi)”三類(lèi)習(xí)慣方面,至少具備兩類(lèi)良好習(xí)慣“,則(E),求出即可;(3)根據(jù)題意,寫(xiě)出即可.【詳解】(1)設(shè)“選取的試卷的調(diào)查結(jié)果是膳食合理狀況類(lèi)中習(xí)慣良好者“的事件為,有效問(wèn)卷共有(份,其中受訪(fǎng)者中膳食合理習(xí)慣良好的人數(shù)是人,故(A);(2)設(shè)該區(qū)“衛(wèi)生習(xí)慣狀況良好者“,“體育鍛煉狀況良好者“、“膳食合理狀況良好者”事件分別為,,,根據(jù)題意,可知(A),(B),(C),設(shè)事件為“該居民在“衛(wèi)生習(xí)慣狀況類(lèi)、體育鍛煉狀況類(lèi)、膳食合理狀況類(lèi)”三類(lèi)習(xí)慣方面,至少具備兩類(lèi)良好習(xí)慣“則.所以該居民在“衛(wèi)生習(xí)慣狀況類(lèi)、體育鍛煉狀況類(lèi)、膳食合理狀況類(lèi)”三類(lèi)習(xí)慣至少具備2個(gè)良好習(xí)慣的概率為0.766.(3).【點(diǎn)睛】本題考查了古典概型求概率,獨(dú)立性事件,互斥性事件求概率等,考查運(yùn)算能力和事件應(yīng)用能力,中檔題.21、(1)3360元;(2)見(jiàn)解析【解析】
(1)根據(jù)頻率分布直方圖計(jì)算每個(gè)農(nóng)戶(hù)的平均損失;(2)根據(jù)頻率分布直方圖計(jì)算隨機(jī)變量X的可能取值,再求X的分布列和數(shù)學(xué)期望值.【詳解】(1)記每個(gè)農(nóng)戶(hù)的平均損失為元,則;(2)由頻率分布直方圖,可得損失超過(guò)1000元的農(nóng)戶(hù)共有(0.00009+0.00003+0.00003)×2000×50=15(戶(hù)),損失超過(guò)8000元的農(nóng)戶(hù)共有
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東科學(xué)技術(shù)職業(yè)學(xué)院《植物繁育實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東科技學(xué)院《肌肉骨骼康復(fù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東金融學(xué)院《實(shí)驗(yàn)影像》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東建設(shè)職業(yè)技術(shù)學(xué)院《英語(yǔ)教師素養(yǎng)與專(zhuān)業(yè)發(fā)展》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東機(jī)電職業(yè)技術(shù)學(xué)院《電機(jī)技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東東軟學(xué)院《藥物合成反應(yīng)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東創(chuàng)新科技職業(yè)學(xué)院《體育政策與法規(guī)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東財(cái)經(jīng)大學(xué)《食品類(lèi)專(zhuān)業(yè)寫(xiě)作》2023-2024學(xué)年第一學(xué)期期末試卷
- 《如何打造團(tuán)隊(duì)氛圍》課件
- 《煙草行業(yè)》課件
- 2025年上海市長(zhǎng)寧區(qū)高三語(yǔ)文一模作文解析及范文:激情對(duì)于行動(dòng)是利大于弊嗎
- 晉升管理制度(30篇)
- 2024信息技術(shù)應(yīng)用創(chuàng)新信息系統(tǒng)適配改造成本度量
- 廣東省廣州市2025屆高三上學(xué)期12月調(diào)研測(cè)試(零模)英語(yǔ) 含解析
- 陜西測(cè)繪地理信息局所屬事業(yè)單位2025年上半年招聘87人和重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
- 保險(xiǎn)學(xué)期末試題及答案
- 高一數(shù)學(xué)上學(xué)期期末模擬試卷01-【中職專(zhuān)用】2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期(高教版2023基礎(chǔ)模塊)(解析版)
- 嚴(yán)重精神障礙患者隨訪(fǎng)服務(wù)記錄表
- 2024-2025學(xué)年人教版八年級(jí)上冊(cè)地理期末測(cè)試卷(一)(含答案)
- 統(tǒng)編版(2024新版)七年級(jí)上冊(cè)道德與法治第四單元綜合測(cè)試卷(含答案)
- 滬教版英語(yǔ)小學(xué)六年級(jí)上學(xué)期期末試題與參考答案(2024-2025學(xué)年)
評(píng)論
0/150
提交評(píng)論