2025屆重慶市第四十二中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第1頁
2025屆重慶市第四十二中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第2頁
2025屆重慶市第四十二中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第3頁
2025屆重慶市第四十二中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第4頁
2025屆重慶市第四十二中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆重慶市第四十二中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是橢圓與雙曲線的公共焦點,P是它們的一個公共點,且,線段的垂直平分線過,若橢圓的離心率為,雙曲線的離心率為,則的最小值為()A. B.3C.6 D.2.已知,則()A. B.1C. D.3.已知圓與圓外切,則()A. B.C. D.4.已知拋物線的焦點坐標是,則拋物線的標準方程為A. B.C. D.5.金剛石的成分為純碳,是自然界中天然存在的最堅硬物質(zhì),它的結(jié)構(gòu)是由8個等邊三角形組成的正八面體.若某金剛石的棱長為2,則它的體積為()A. B.C. D.6.若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是減函數(shù),則函數(shù)在區(qū)間上的圖象可能是()A. B.C. D.7.已知是等差數(shù)列,,,則公差為()A.6 B.C. D.28.已知等比數(shù)列的各項均為正數(shù),公比,且滿足,則()A.8 B.4C.2 D.19.曲線與曲線的A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等10.設(shè)是虛數(shù)單位,則復(fù)數(shù)對應(yīng)的點在平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限11.直三棱柱ABC-A1B1C1中,△ABC為等邊三角形,AA1=AB,M是A1C1的中點,則AM與平面所成角的正弦值為()A. B.C. D.12.已知中,內(nèi)角,,的對邊分別為,,,,.若為直角三角形,則的面積為()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.若關(guān)于的不等式恒成立,則實數(shù)的取值范圍是______.14.設(shè)、為正數(shù),若,則的最小值是______,此時______.15.已知橢圓的右頂點為A,上頂點為B,且直線l與橢圓交于C,D兩點,若直線l直線AB,設(shè)直線AC,BD的斜率分別為,,則的值為___________.16.橢圓的右焦點是,兩點是橢圓的左頂點和上頂點,若△是直角三角形,則橢圓的離心率是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:的焦點為F,為拋物線C上一點,且(1)求拋物線C的方程:(2)若以點為圓心,為半徑的圓與C的準線交于A,B兩點,過A,B分別作準線的垂線交拋物線C于D,E兩點,若,證明直線DE過定點18.(12分)如圖,已知正四棱錐中,O為底面對角線的交點.(1)求證:平面;(2)求證:平面.19.(12分)已知動點M到點F(0,2)的距離,與點M到直線l:y=﹣2的距離相等.(1)求動點M的軌跡方程;(2)若過點F且斜率為1的直線與動點M的軌跡交于A,B兩點,求線段AB的長度.20.(12分)已知數(shù)列滿足,記數(shù)列的前項和為,且,(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前100項和21.(12分)如圖,點分別在射線,上運動,且(1)求;(2)求線段的中點M的軌跡C的方程;(3)直線與,軌跡C及自上而下依次交于D,E,F(xiàn),G四點,求證:22.(10分)設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用橢圓和雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示,再利用均值不等式得到答案【詳解】設(shè)橢圓長軸,雙曲線實軸,由題意可知:,又,,兩式相減,可得:,,.,,當(dāng)且僅當(dāng)時取等號,的最小值為6,故選:C【點睛】本題考查了橢圓雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示是解題的關(guān)鍵,意在考查學(xué)生的計算能力2、B【解析】先根據(jù)共軛復(fù)數(shù)的定義可得,再根據(jù)復(fù)數(shù)的運算法則即可求出【詳解】因為,所以故選:B3、D【解析】根據(jù)兩圓外切關(guān)系,圓心距離等于半徑的和列方程求參數(shù).【詳解】由題設(shè),兩圓圓心分別為、,半徑分別為1、r,∴由外切關(guān)系知:,可得.故選:D.4、D【解析】根據(jù)拋物線的焦點坐標得到2p=4,進而得到方程.【詳解】拋物線的焦點坐標是,即p=2,2p=4,故得到方程為.故答案為D.【點睛】這個題目考查了拋物線的標準方程的求法,題目較為簡單.5、C【解析】由幾何關(guān)系先求出一個正四面體的高,再結(jié)合錐體體積公式即可求解正八面體的體積.【詳解】如圖,設(shè)底面中心為,連接,由幾何關(guān)系知,,則正八面體體積為.故選:C6、A【解析】根據(jù)導(dǎo)數(shù)概念和幾何意義判斷【詳解】由題意得,圖象上某點處的切線斜率隨增大而減小,滿足要求的只有A故選:A7、C【解析】設(shè)的首項為,把已知的兩式相減即得解.【詳解】解:設(shè)的首項為,根據(jù)題意得,兩式相減得.故選:C8、A【解析】根據(jù)是等比數(shù)列,則通項為,然后根據(jù)條件可解出,進而求得【詳解】由為等比數(shù)列,不妨設(shè)首項為由,可得:又,則有:則故選:A9、D【解析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷【詳解】解:曲線表示焦點在軸上,長軸長10,短軸長為6,離心率為,焦距為8曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為8對照選項,則正確故選:【點睛】本題考查橢圓的方程和性質(zhì),考查運算能力,屬于基礎(chǔ)題10、A【解析】計算出復(fù)數(shù)即可得出結(jié)果.【詳解】由于,對應(yīng)的點的坐標為,在第一象限,故選:A.11、B【解析】取的中點,以為原點,所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,即可根據(jù)線面角的向量公式求出【詳解】如圖所示,取的中點,以為原點,所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,不妨設(shè),則,所以,平面的一個法向量為設(shè)AM與平面所成角為,向量與所成的角為,所以,即AM與平面所成角的正弦值為故選:B12、C【解析】由正弦定理化角為邊后,由余弦定理求得,然后分類討論:或求解【詳解】由正弦定理,可化為:,即,所以,,所以,又為直角三角形,若,則,,,,若,則,,,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)由題可知,當(dāng)時,可得適合題意,當(dāng)時,可求函數(shù)的最小值即得,當(dāng)時不合題意,即得.【詳解】設(shè),由題可知,∴,當(dāng)時,,適合題意,所以,當(dāng)時,令,則,此時時,,單調(diào)遞減,,,單調(diào)遞增,∴,又,∴,∴,即,解得,當(dāng)時,時,,,故的值有正有負,不合題意;綜上,實數(shù)的取值范圍是.故答案為:.【點睛】關(guān)鍵點點睛:本題考查不等式恒成立求參數(shù)的取值范圍,設(shè)由題可知,當(dāng)時,利用導(dǎo)數(shù)可求函數(shù)的最小值,結(jié)合,可得,進而通過解,即得.14、①.4②.【解析】巧用“1”改變目標式子的結(jié)果,借助均值不等式求最值即可.【詳解】,當(dāng)且僅當(dāng)即,時等號成立.故答案為,【點睛】本題考查最值的求法,注意運用“1”的代換法和基本不等式,考查運算能力,屬于中檔題15、##0.25【解析】求出點A,B坐標,設(shè)出直線l的方程,聯(lián)立直線l與橢圓方程,借助韋達定理即可計算作答.【詳解】依題意,點,直線AB斜率為,因直線l直線AB,則設(shè)直線l方程為:,,由消去y并整理得:,,解得,于是有或,設(shè),則,有,因此,,所以的值為.故答案:16、【解析】由題設(shè)易知,應(yīng)用斜率的兩點式及橢圓參數(shù)關(guān)系可得,進而求橢圓離心率.【詳解】由題設(shè),,,,又△是直角三角形,顯然,所以,可得,則,解得,又,所以.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)解方程和即得解;(2)設(shè),,將與圓P的方程聯(lián)立得到韋達定理,再寫出直線的方程即得解.【小問1詳解】解:因為拋物線C上一點,且,所以到拋物線C的準線的距離為2則,,則,所以,故拋物線C的方程為【小問2詳解】證明:由(1)知,則圓P的方程為設(shè),,將與圓P的方程聯(lián)立,可得,則,當(dāng)時,,不妨令,則,此時;當(dāng)時,直線DE的斜率為,則直線DE的方程為,即,即,令且,得,直線過點;綜上,直線DE過定點18、(1)證明見解析;(2)證明見解析.【解析】(1)根據(jù)給定條件,利用線面平行的判定推理作答.(2)利用正四棱錐的結(jié)構(gòu)特征,結(jié)合線面垂直的判定推理作答.小問1詳解】在正四棱錐中,由正方形得:,而平面,平面,所以平面.【小問2詳解】在正四棱錐中,O為底面對角線的交點,則O是AC,BD的中點,而,,則,,因,平面,所以平面.19、(1)x2=8y(2)16【解析】小問1:由拋物線的定義可求得動點M的軌跡方程;小問2:可知直線AB的方程為y=x+2,設(shè)點A(x1,y1)、B(x2,y2),將直線AB的方程與拋物線的方程聯(lián)立,求出y1+y2的值,利用拋物線的定義可求得|AB|的值.【小問1詳解】由題意點M的軌跡是以F為焦點,直線l為準線的拋物線,所以,則p=4,所以動點M的軌跡方程是x2=8y;【小問2詳解】由已知直線AB方程是y=x+2,設(shè)A(x1,y1)、B(x2,y2),由得x2﹣8x﹣16=0,,所以x1+x2=8,則y1+y2=x1+x2+4=12,故|AB|=y(tǒng)1+y2+4=1620、(1)(2)【解析】(1)由題意得出,然后與原式結(jié)合,兩式相減并化簡求出,最后根據(jù)等差數(shù)列的定義求得答案;(2)結(jié)合(1),分別討論,和三種情況,分別求出,進而求出.【小問1詳解】因為,所以,兩式相減得,所以又,所以數(shù)列是首項為,公差為2的等差數(shù)列,所以.【小問2詳解】由得,當(dāng)時,,當(dāng)時,,當(dāng)時,,所以.21、(1)2(2)(3)證明見詳解【解析】(1)用兩點間的距離公式和三角形的面積公式,結(jié)合已知直接可解;(2)根據(jù)中點坐標公式,結(jié)合(1)中結(jié)論可得;(3)要證,只需證和的中點重合,直接或利用韋達定理求出中點橫坐標,證明其相等即可.【小問1詳解】記直線的傾斜角為,則,易得所以因為,所以,整理得:【小問2詳解】設(shè)點M的坐標為,則即,由(1)知,所以,即【小問3詳解】要證,只需證和的中點重合,記D,E,F(xiàn),G的橫坐標分別為,易知直線的斜率(當(dāng)時與漸近線平行或重合,此時與雙曲線最多一個交點)則解方程組,得解方程組,得將代入,得所以因為所以所以和的中點的橫坐標相等,所以和的中點重合,記其中點為N,則有,即22、(1);(2)存在,,.【解析】(1)根據(jù)橢圓E:(a,b>0)過M(2,),N(,1)兩點,直接代入方程解方程組即可.(2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,當(dāng)切線斜率存在時,設(shè)該圓的切線方程為,聯(lián)立,根據(jù),結(jié)合韋達定理運算,同時滿足,則存在,否則不存在,當(dāng)切線斜率不存在時,驗證即可;在該圓的方程存在時,利用弦長公式結(jié)合韋達定理得到求解.【詳解】(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以,解得,所以,所以橢圓E的方程為.(2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設(shè)該圓的切線方程為,聯(lián)立得,則△=,即,,,要使,需使,即,所以,所以,又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,所以,則所求的圓為,此時圓的切線都滿足或,而當(dāng)切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.因為,所以,,①當(dāng)時,,因為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論