山西省忻州市忻州一中2025屆數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁(yè)
山西省忻州市忻州一中2025屆數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁(yè)
山西省忻州市忻州一中2025屆數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁(yè)
山西省忻州市忻州一中2025屆數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁(yè)
山西省忻州市忻州一中2025屆數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山西省忻州市忻州一中2025屆數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,有一個(gè)水平放置的透明無(wú)蓋的正方體容器,容器高4cm,將一個(gè)球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時(shí)測(cè)得水深為3cm,如果不計(jì)容器的厚度,則球的體積為A.B.C.D.2.已知是定義域?yàn)榈呐己瘮?shù),當(dāng)時(shí),,則的解集為()A. B.C. D.3.設(shè)a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,,則4.已知函數(shù)是定義域?yàn)榈钠婧瘮?shù),且,當(dāng)時(shí),,則()A. B.C. D.5.設(shè)兩條直線方程分別為,,已知,是方程的兩個(gè)實(shí)根,且,則這兩條直線之間的距離的最大值和最小值分別是A. B.C. D.6.長(zhǎng)方體中,,,E為中點(diǎn),則異面直線與CE所成角為()A. B.C. D.7.下列各對(duì)角中,終邊相同的是()A.和 B.和C.和 D.和8.關(guān)于x的一元二次不等式對(duì)于一切實(shí)數(shù)x都成立,則實(shí)數(shù)k滿足()A. B.C. D.9.已知函數(shù)的圖象上的每一點(diǎn)的縱坐標(biāo)擴(kuò)大到原來(lái)的倍,橫坐標(biāo)擴(kuò)大到原來(lái)的倍,然后把所得的圖象沿軸向右平移個(gè)單位,這樣得到的曲線和的圖象相同,則已知函數(shù)的解析式為A B.C. D.10.已知命題p:?x∈R,x2+2x<0,則A.?x∈R,x2+2x≤0 B.?x∈RC.?x∈R,x2+2x≥0 D.?x∈R二、填空題:本大題共6小題,每小題5分,共30分。11.在△ABC中,,面積為12,則=______12.以等邊三角形每個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑,在另兩個(gè)頂點(diǎn)間作一段弧,三段弧圍成的曲邊三角形就是勒洛三角形.勒洛三角形是由德國(guó)機(jī)械工程專家、機(jī)構(gòu)運(yùn)動(dòng)學(xué)家勒洛首先發(fā)現(xiàn),所以以他的名字命名.一些地方的市政檢修井蓋、方孔轉(zhuǎn)機(jī)等都有應(yīng)用勒洛三角形.如圖,已知某勒洛三角形的一段弧的長(zhǎng)度為,則該勒洛三角形的面積是___________.13.直線與平行,則的值為_(kāi)________.14.若,則________15.已知函數(shù),對(duì)于任意都有,則的值為_(kāi)_____________.16.如圖,在三棱錐中,已知,,,,則三棱錐的體積的最大值是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.某中學(xué)調(diào)查了某班全部45名學(xué)生參加社會(huì)實(shí)踐活動(dòng)和社會(huì)公益活動(dòng)的情況,數(shù)據(jù)如表單位:人:參加社會(huì)公益活動(dòng)未參加社會(huì)公益活動(dòng)參加社會(huì)實(shí)踐活動(dòng)304未參加社會(huì)實(shí)踐活動(dòng)83從該班隨機(jī)選1名學(xué)生,求該學(xué)生未參加社會(huì)公益活動(dòng)也未參加社會(huì)實(shí)踐活動(dòng)的概率;在參加社會(huì)公益活動(dòng),但未參加社會(huì)實(shí)踐活動(dòng)的8名同學(xué)中,有5名男同學(xué),,,,,三名女同學(xué),,,現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人參加崗位體驗(yàn)活動(dòng),求被選中且未被選中的概率18.如圖,設(shè)α是任意角,α∈R,它的終邊OA與單位圓相交于點(diǎn)A,點(diǎn)(1)當(dāng)A在OB的反向延長(zhǎng)線上時(shí),求tanα;(2)當(dāng)OA⊥OB時(shí),求sin2α.19.如圖,已知正三棱柱的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為,點(diǎn)E在側(cè)棱上,點(diǎn)F在側(cè)棱上,且(1)求證:;(2)求二面角的大小20.(1)計(jì)算(2)已知,求的值21.如圖所示,正方形邊長(zhǎng)為分別是邊上的動(dòng)點(diǎn).(1)當(dāng)時(shí),設(shè),將的面積用表示,并求出面積的最大值;(2)當(dāng)周長(zhǎng)為4時(shí),設(shè),.用表示,由此研究的大小是否為定值,并說(shuō)明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】設(shè)球的半徑為R,根據(jù)已知條件得出正方體上底面截球所得截面圓的半徑為2cm,球心到截面圓圓心的距離為,再利用球的性質(zhì),求得球的半徑,最后利用球體體積公式,即可得出答案【詳解】設(shè)球的半徑為R,設(shè)正方體上底面截球所得截面圓恰好為上底面正方形的內(nèi)切圓,該圓的半徑為,且該截面圓圓心到水面的距離為1cm,即球心到截面圓圓心的距離為,由勾股定理可得,解得,因此,球的體積為故選A【點(diǎn)睛】本題主要考查了球體的體積的計(jì)算問(wèn)題,解決本題的關(guān)鍵在于利用幾何體的結(jié)構(gòu)特征和球的性質(zhì),求出球體的半徑,著重考查了空間想象能力,以及推理與計(jì)算能力,屬于基礎(chǔ)題2、C【解析】首先畫出函數(shù)的圖象,并當(dāng)時(shí),,由圖象求不等式的解集.【詳解】由題意畫出函數(shù)的圖象,當(dāng)時(shí),,解得,是偶函數(shù),時(shí),,由圖象可知或,解得:或,所以不等式的解集是.故選:C【點(diǎn)睛】本題考查函數(shù)圖象的應(yīng)用,利用函數(shù)圖象解不等式,意在考查數(shù)形結(jié)合分析問(wèn)題和解決問(wèn)題的能力,屬于幾次題型.3、D【解析】由空間中直線、平面的位置關(guān)系逐一判斷即可得解.【詳解】解:由a,b是兩條不同的直線,α,β是兩個(gè)不同的平面,知:在A中,若,,則或,故A錯(cuò)誤;在B中,若,,則,故B錯(cuò)誤;在C中,若,,則或,故C錯(cuò)誤;在D中,若,,,則由面面垂直的判定定理得,故D正確;故選:D【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬中檔題4、A【解析】由奇偶性結(jié)合得出,再結(jié)合解析式得出答案.【詳解】由函數(shù)是定義域?yàn)榈钠婧瘮?shù),且,,而,則故選:A5、B【解析】?jī)蓷l直線之間的距離為,選B點(diǎn)睛:求函數(shù)最值,一般通過(guò)條件將函數(shù)轉(zhuǎn)化為一元函數(shù),根據(jù)定義域以及函數(shù)單調(diào)性確定函數(shù)最值6、C【解析】以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線與所成角【詳解】解:長(zhǎng)方體中,,,為中點(diǎn),以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,,,,,,,設(shè)異面直線與所成角為,則,,異面直線與所成角為故選:【點(diǎn)睛】本題考查異面直線所成角的余弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題7、C【解析】利用終邊相同的角的定義,即可得出結(jié)論【詳解】若終邊相同,則兩角差,A.,故A選項(xiàng)錯(cuò)誤;B.,故B選項(xiàng)錯(cuò)誤;C.,故C選項(xiàng)正確;D.,故D選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查終邊相同的角的概念,屬于基礎(chǔ)題.8、C【解析】只需要滿足條件即可.【詳解】由題意,解得.故選:C.9、B【解析】分析:將.的圖象軸向左平移個(gè)單位,然后把所得的圖象上的每一點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的四分之一倍,橫坐標(biāo)變?yōu)樵瓉?lái)的二分之一倍,即可得到函數(shù)的圖象,從而可得結(jié)果.詳解:利用逆過(guò)程:將.的圖象軸向左平移個(gè)單位,得到的圖象;將的圖象上的每一點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的四分之一倍得到的圖象;將的圖象上的每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的四分之一倍得到的圖象,所以函數(shù)的解析式為,故選B.點(diǎn)睛:本題主要考查了三角函數(shù)圖象變換,重點(diǎn)考查學(xué)生對(duì)三角函數(shù)圖象變換規(guī)律的理解與掌握,能否正確處理先周期變換后相位變換這種情況下圖象的平移問(wèn)題,反映學(xué)生對(duì)所學(xué)知識(shí)理解的深度.10、C【解析】根據(jù)特稱命題否定是全稱命題即可得解.【詳解】把存在改為任意,把結(jié)論否定,?p為?x∈R,x2故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用面積公式即可求出sinC.使用二倍角公式求出cos2C【詳解】由題意,在中,,,面積為12,則,解得∴故答案為【點(diǎn)睛】本題考查了三角形的面積公式,二倍角公式在解三角形中的應(yīng)用,其中解答中應(yīng)用三角形的面積公式和余弦的倍角公式,合理余運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題12、【解析】計(jì)算出一個(gè)弓形的面積,由題意可知,勒洛三角形由三個(gè)全等的弓形以及一個(gè)正三角形構(gòu)成,利用弓形和正三角形的面積可求得結(jié)果.【詳解】由弧長(zhǎng)公式可得,可得,所以,由和線段所圍成的弓形的面積為,而勒洛三角形由三個(gè)全等的弓形以及一個(gè)正三角形構(gòu)成,因此,該勒洛三角形的面積為.故答案為:.13、【解析】根據(jù)兩直線平行得出實(shí)數(shù)滿足的等式與不等式,解出即可.【詳解】由于直線與平行,則,解得.故答案為:.【點(diǎn)睛】本題考查利用兩直線平行求參數(shù),考查運(yùn)算求解能力,屬于基礎(chǔ)題.14、##0.5【解析】利用誘導(dǎo)公式即得.【詳解】∵,∴.故答案為:.15、【解析】由條件得到函數(shù)的對(duì)稱性,從而得到結(jié)果【詳解】∵f=f,∴x=是函數(shù)f(x)=2sin(ωx+φ)的一條對(duì)稱軸.∴f=±2.【點(diǎn)睛】本題考查了正弦型三角函數(shù)的對(duì)稱性,注意對(duì)稱軸必過(guò)最高點(diǎn)或最低點(diǎn),屬于基礎(chǔ)題.16、【解析】過(guò)作垂直于的平面,交于點(diǎn),,作,通過(guò)三棱錐體積公式可得到,可分析出當(dāng)最大時(shí)所求體積最大,利用橢圓定義可確定最大值,由此求得結(jié)果.【詳解】過(guò)作垂直于的平面,交于點(diǎn),作,垂足為,,當(dāng)取最大值時(shí),三棱錐體積取得最大值,由可知:當(dāng)為中點(diǎn)時(shí)最大,則當(dāng)取最大值時(shí),三棱錐體積取得最大值.又,在以為焦點(diǎn)的橢圓上,此時(shí),,,,三棱錐體積最大值為.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查三棱錐體積最值的求解問(wèn)題,解題關(guān)鍵是能夠?qū)⑺篌w積的最值轉(zhuǎn)化為線段長(zhǎng)度最值的求解問(wèn)題,通過(guò)確定線段最值得到結(jié)果.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】從該班隨機(jī)選1名學(xué)生,利用古典概型能求出該學(xué)生未參加社會(huì)公益活動(dòng)也未參加社會(huì)實(shí)踐活動(dòng)的概率基本事件總數(shù),被選中且未被選中包含的基本事件個(gè)數(shù),由此能求出被選中且未被選中的概率【詳解】解:從該班隨機(jī)選1名學(xué)生,該學(xué)生既未參加社會(huì)公益活動(dòng)也未參加社會(huì)實(shí)踐活動(dòng)的概率在參加社會(huì)公益活動(dòng),但未參加社會(huì)實(shí)踐活動(dòng)的8名同學(xué)中,有5名男同學(xué),,,,,三名女同學(xué),,,現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人參加崗位體驗(yàn)活動(dòng),基本事件總數(shù),被選中且未被選中包含的基本事件個(gè)數(shù),被選中且未被選中的概率【點(diǎn)睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),屬于基礎(chǔ)題18、(1);(2)【解析】(1)推導(dǎo)出的坐標(biāo),由此能求出;(2)設(shè),則,且,解得,,從而,,由此能求出【詳解】解:(1)設(shè)是任意角,,它的終邊與單位圓相交于點(diǎn),點(diǎn)在的反向延長(zhǎng)線上,所以,;(2)當(dāng)時(shí),設(shè),則,且,解得,,或,,則,或,,.或故19、(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)幾何體的結(jié)構(gòu)特征,可以為坐標(biāo)原點(diǎn),分別為軸和軸建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo).(1)證明即即可;(2)分別求出平面的一個(gè)法向量為和側(cè)面的一個(gè)法向量為,根據(jù)求出的法向量的夾角來(lái)求二面角的大小.試題解析:建立如圖所示的空間直角坐標(biāo)系,則由已知可得(1)證明:,所以.(2),設(shè)平面的一個(gè)法向量為,由,得,即,解得,可取設(shè)側(cè)面的一個(gè)法向量為,由,及可取.設(shè)二面角的大小為,于是由為銳角可得所以.即所求二面角的大小為.考

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論