2025屆江西省宜春市靖安中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第1頁
2025屆江西省宜春市靖安中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第2頁
2025屆江西省宜春市靖安中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第3頁
2025屆江西省宜春市靖安中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第4頁
2025屆江西省宜春市靖安中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江西省宜春市靖安中學高二數(shù)學第一學期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù),滿足則的最大值為()A.-1 B.0C.1 D.22.第24屆冬季奧林匹克運動會,將在2022年2月4日在中華人民共和國北京市和張家口市聯(lián)合舉行.這是中國歷史上第一次舉辦冬季奧運會,北京成為奧運史上第一個舉辦夏季奧林匹克運動會和冬季奧林匹克運動會的城市.同時中國也成為第一個實現(xiàn)奧運“全滿貫”(先后舉辦奧運會、殘奧會、青奧會、冬奧會、冬殘奧會)國家.根據(jù)規(guī)劃,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結構鳥瞰圖如圖所示,內外兩圈的鋼骨架是離心率相同的橢圓,若由外層橢圓長軸一端點和短軸一端點分別向內層橢圓引切線,(如圖),且兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.3.曲線與曲線的()A.實軸長相等 B.虛軸長相等C.焦距相等 D.漸進線相同4.有一個圓錐形鉛垂,其底面直徑為10cm,母線長為15cm.P是鉛垂底面圓周上一點,則關于下列命題:①鉛垂的側面積為150cm2;②一只螞蟻從P點出發(fā)沿鉛垂側面爬行一周、最終又回到P點的最短路徑的長度為cm.其中正確的判斷是()A.①②都正確 B.①正確、②錯誤C.①錯誤、②正確5.已知橢圓:的左、右焦點分別為、,為坐標原點,為橢圓上一點.與軸交于一點,,則橢圓C的離心率為()A. B.C. D.6.南宋數(shù)學家楊輝所著的《詳解九章算法》中有如下俯視圖所示的幾何體,后人稱之為“三角垛”.其最上層有1個球,第二層有3個球,第三層有6個球,…,則第十層球的個數(shù)為()A.45 B.55C.90 D.1107.經(jīng)過點且與直線垂直的直線方程為()A. B.C. D.8.已知直線過點,且與直線垂直,則直線的方程為()A. B.C. D.9.設為可導函數(shù),且滿足,則曲線在點處的切線的斜率是A. B.C. D.10.考試停課復習期間,小王同學計劃將一天中的7節(jié)課全部用來復習4門不同的考試科目,每門科目復習1或2節(jié)課,則不同的復習安排方法有()種A.360 B.630C.2520 D.1512011.已知等邊三角形的一個頂點在橢圓E上,另兩個頂點位于E的兩個焦點處,則E的離心率為()A. B.C. D.12.若雙曲線的漸近線方程為,則的值為()A.2 B.3C.4 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知分別是平面α,β,γ的法向量,則α,β,γ三個平面中互相垂直的有________對14.已知,,且,則的最小值為______.15.已知雙曲線的左、右焦點分別為,右頂點為,為雙曲線上一點,且,線段的垂直平分線恰好經(jīng)過點,則雙曲線的離心率為_______16.曲線在點處的切線的方程為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線l過點A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點P,Q,且|PQ|=8,求圓C的方程18.(12分)已知圓C經(jīng)過,,三點,并且與y軸交于P,Q兩點,求線段PQ的長度.19.(12分)已知等差數(shù)列的前項和為,且,(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和20.(12分)已知雙曲線,拋物線的焦點與雙曲線的一個焦點相同,點為拋物線上一點.(1)求雙曲線的焦點坐標;(2)若點到拋物線的焦點的距離是5,求的值.21.(12分)已知函數(shù)(1)討論函數(shù)的單調性;(2)若,證明:22.(10分)已知等比數(shù)列的前項和為,,.數(shù)列的前項和為,且,(1)分別求數(shù)列和的通項公式;(2)若,為數(shù)列的前項和,是否存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列?若存在,求出所有滿足條件的,,的值;若不存在,說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù),即可得到結果【詳解】由約束條件畫出可行域如圖,化目標函數(shù)為,由圖可知當直線過點時,直線在軸上的截距最小,取得最大值2.故選:D2、B【解析】分別設內外層橢圓方程為、,進而設切線、分別為、,聯(lián)立方程組整理并結合求、關于a、b、m的關系式,再結合已知得到a、b的齊次方程求離心率即可.【詳解】若內層橢圓方程為,由離心率相同,可設外層橢圓方程為,∴,設切線為,切線為,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故選:B.【點睛】關鍵點點睛:根據(jù)內外橢圓的離心率相同設橢圓方程,并寫出切線方程,聯(lián)立方程結合及已知條件,得到橢圓參數(shù)的齊次方程求離心率.3、D【解析】將曲線化為標準方程后即可求解.【詳解】化為標準方程為,由于,則兩曲線實軸長、虛軸長、焦距均不相等,而漸近線方程同為.故選:4、C【解析】根據(jù)圓錐的側面展開圖為扇形,由扇形的面積公式計算即可判斷①,在展開圖中可知沿著爬行即為最短路徑,計算即可判斷②.【詳解】直徑為10cm,母線長為15cm.底面圓周長為.將其側面展開后得到扇形半徑為cm,弧長為,則扇形面積為,①錯誤.將其側面展開,則爬行最短距離為,由弧長公式得展開后扇形弧度數(shù)為,作,,又,,cm,②正確.故選:C5、C【解析】由橢圓的性質可先求得,故可得,再由橢圓的定義得a,c的關系,故可得答案【詳解】,,又,,則,,則,,由橢圓的定義得,,,故選:C6、B【解析】根據(jù)題意,發(fā)現(xiàn)規(guī)律并將規(guī)律表達出來,第層有個球.【詳解】根據(jù)規(guī)律,可以得知:第一層有個球;第二層有個球;第三層有個球,則根據(jù)規(guī)律可知:第層有個球設第層的小球個數(shù)為,則有:故第十層球的個數(shù)為:故選:7、A【解析】根據(jù)點斜式求得正確答案.【詳解】直線的斜率為,經(jīng)過點且與直線垂直的直線方程為,即.故選:A8、A【解析】求出直線斜率,利用點斜式可得出直線的方程.【詳解】直線的斜率為,則直線的斜率為,故直線的方程為,即.故選:A.9、D【解析】由題,為可導函數(shù),,即曲線在點處的切線的斜率是,選D【點睛】本題考查導數(shù)的定義,切線的斜率,以及極限的運算,本題解題的關鍵是對所給的極限式進行整理,得到符合導數(shù)定義的形式10、C【解析】,先安排復習節(jié)的科目,然后安排其余科目,由此計算出不同的復習安排方法數(shù).【詳解】第步,門科目選門,安排節(jié)課,方法數(shù)有種,第步,安排其余科目,每門科目節(jié)課,方法數(shù)有種,所以不同的復習安排方法有種.故選:C11、B【解析】根據(jù)已知條件求得的關系式,從而求得橢圓的離心率.【詳解】依題意可知,所以.故選:B12、A【解析】根據(jù)雙曲線方程確定焦點位置,再根據(jù)漸近線方程為求解.【詳解】因為雙曲線所以焦點在x軸上,又因為漸近線方程為,所以,所以.故選:A【點睛】本題主要考查雙曲線的幾何性質,還考查了理解辨析的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、0【解析】計算每兩個向量的數(shù)量積,判斷該兩個向量是否垂直,可得答案.【詳解】因為,,.所以中任意兩個向量都不垂直,即α,β,γ中任意兩個平面都不垂直故答案為:0.14、4【解析】利用“1”的妙用,運用基本不等式即可求解.【詳解】∵,即,∴又∵,,∴,當且僅當且,即,時,等號成立,則的最小值為4.故答案為:.15、【解析】在中求出,再在中求出,即可得到的齊次式,化簡即可求出離心率【詳解】設雙曲線:,,不妨設為雙曲線右支上一點因為線段的垂直平分線恰好經(jīng)過點,且,所以,在中,,所以,,在中,,所以,,因此,,化簡得,,即,而,解得故答案為:16、【解析】求出導函數(shù),得切線斜率后可得切線方程【詳解】,∴切線斜率為,切線方程為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直關系得過直線l斜率,由點斜式化簡即可求解l的一般式方程;(2)結合勾股定理建立弦心距(由點到直線距離公式求解),半弦長,圓半徑的基本關系,解出,即可求解圓C的方程【小問1詳解】因為直線l與直線4x﹣3y+t=0垂直,所以直線l的斜率為,故直線l的方程為,即3x+4y+5=0,因此直線l的一般式方程為3x+4y+5=0;【小問2詳解】圓C:x2+y2=m的圓心為(0,0),半徑為,圓心(0,0)到直線l的距離為,則半徑滿足m=42+12=17,即m=17,所以圓C:x2+y2=1718、【解析】設圓的方程為,代入點的坐標,求出,,,令,即可得出結論【詳解】解:設圓的方程為,則,,,,,即,令,可得,解得、,所以、,或、,,19、(1)(2)【解析】(1)設等差數(shù)列公差為d,首項為a1,根據(jù)已知條件列出方程組求解a1,d,代入通項公式即可得答案;(2)根據(jù)等差、等比數(shù)列的前n項和公式,利用分組求和法即可求解【小問1詳解】解:設等差數(shù)列公差為d,首項為a1,由題意,有,解得,所以;【小問2詳解】解:,所以20、(1);(2).【解析】(1)根據(jù)雙曲線的方程求出即得雙曲線的焦點坐標;(2)先求出的值,再解方程得解.【詳解】(1)因為雙曲線的方程為,所以.所以.所以.所以雙曲線的焦點坐標分別為.(2)因為拋物線的焦點與雙曲線的一個焦點相同,所以拋物線的焦點坐標是(2,0),所以.因為點為拋物線上一點,所以點到拋物線的焦點的距離等于點到拋物線的準線的距離.因為點到拋物線的焦點的距離是5,即,所以.【點睛】本題主要考查雙曲線的焦點坐標的求法,考查拋物線的定義和幾何性質,意在考查學生對這些知識的理解掌握水平.21、(1)當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;(2)見詳解【解析】(1)對函數(shù)進行求導,然后根據(jù)參數(shù)進行分類討論;(2)構造函數(shù),求函數(shù)的最小值即可證出.【詳解】(1)的定義域為,.當時,在上恒成立,所以在上單調遞增;當時,時,;時,,所以在上單調遞減,在上單調遞增.綜上所述,當時,在上單調遞增;當時,在上單調遞減,在上單調遞增.(2)當時,.令,,則.,令,.恒成立,所以在上單調遞增.因為,,所以存在唯一的,使得,即.①當時,,即,所以在上單調遞減;當時,,即,所以在上單調遞增.所以,,②方法一:把①代入②得,.設,.則恒成立,所以在上單調遞減,所以.因為,所以,即,所以,所以時,.方法二:設,.則,所以在上單調遞增,所以,所以.因為,所以,所以,所以時,.【點睛】不等式證明問題是近年高考命題的熱點,利用導數(shù)證明不等式的方法主要有兩個:(1)不等式兩邊作差構造函數(shù),利用導數(shù)研究函數(shù)的單調性,求出函數(shù)最值即可;(2)觀察不等式的特點,結合已解答問題把要證的不等式變形,并運用已證結論先行放縮,再化簡或者進一步利用導數(shù)證明.22、(1),;(2)不存在,理由見解析.【解析】(1)利用數(shù)列為等比數(shù)列,將已知的等式利用首項和公比表示,得到一個方程組,求解即可得到首項和公比,結合等比數(shù)列的通項公式即可求出;將已知的等式變形,得到數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式求出,再結合數(shù)列的第項與前項和之間的關系進行求解,即可得到;(2)先利用等比數(shù)列求和公式求出,從而得到的表達式,然后利用裂項相消求和法求出,假設存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,利用等比中項、等差中項以及進行化簡變形,得到假設不成立,故可得到答案【詳解】(1)因為數(shù)列為等比數(shù)列,設首項為,公比為,由題意可知,所以,所以,由②可得,即,所以或2,因為,所以,所以,所以,由,可得,所以數(shù)列為等差數(shù)列,首項為,公差為1,故,則,當時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論