版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市師大二附中2025屆數(shù)學(xué)高二上期末統(tǒng)考試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“”是“圓與軸相切”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件2.下列事件:①連續(xù)兩次拋擲同一個(gè)骰子,兩次都出現(xiàn)2點(diǎn);②某人買彩票中獎(jiǎng);③從集合中任取兩個(gè)不同元素,它們的和大于2;④在標(biāo)準(zhǔn)大氣壓下,水加熱到90℃時(shí)會(huì)沸騰.其中是隨機(jī)事件的個(gè)數(shù)是()A.1 B.2C.3 D.43.《周髀算經(jīng)》中有這樣一個(gè)問題:從冬至起,接下來(lái)依次是小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種共十二個(gè)節(jié)氣,其日影長(zhǎng)依次成等差數(shù)列,其中大寒、驚蟄、谷雨三個(gè)節(jié)氣的日影長(zhǎng)之和為25.5尺,且前九個(gè)節(jié)氣日影長(zhǎng)之和為85.5尺,則立春的日影長(zhǎng)為()A.9.5尺 B.10.5尺C.11.5尺 D.12.5尺4.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),,當(dāng)時(shí),,則使得成立的的取值范圍是A. B.C D.5.已知平面直角坐標(biāo)系內(nèi)一動(dòng)點(diǎn)P,滿足圓上存在一點(diǎn)Q使得,則所有滿足條件的點(diǎn)P構(gòu)成圖形的面積為()A. B.C. D.6.若雙曲線(,)的一條漸近線經(jīng)過(guò)點(diǎn),則雙曲線的離心率為()A. B.C. D.27.下列關(guān)于命題的說(shuō)法錯(cuò)誤的是A.命題“若,則”的逆否命題為“若,則”B.“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件C.命題“,使得”的否定是“,均有”D.“若為的極值點(diǎn),則”的逆命題為真命題8.已知空間向量,且與垂直,則等于()A.-2 B.-1C.1 D.29.在流行病學(xué)中,基本傳染數(shù)是指在沒有外力介入,同時(shí)所有人都沒有免疫力的情況下,一個(gè)感染者平均傳染的人數(shù).一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過(guò)程中傳染的概率決定.假設(shè)某種傳染病的基本傳染數(shù),平均感染周期為4天,那么感染人數(shù)超過(guò)1000人大約需要()(初始感染者傳染個(gè)人為第一輪傳染,這個(gè)人每人再傳染個(gè)人為第二輪傳染)A.20天 B.24天C.28天 D.32天10.已知、分別是橢圓的左、右焦點(diǎn),A是橢圓上一動(dòng)點(diǎn),圓C與的延長(zhǎng)線、的延長(zhǎng)線以及線段相切,若為其中一個(gè)切點(diǎn),則()A. B.C. D.與2的大小關(guān)系不確定11.已知實(shí)數(shù)、滿足,則的最大值為()A. B.C. D.12.如圖,在空間四邊形OABC中,,,,點(diǎn)N為BC的中點(diǎn),點(diǎn)M在線段OA上,且OM=2MA,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的漸近線上兩點(diǎn)A,B的中點(diǎn)坐標(biāo)為(2,2),則直線AB的斜率是_________.14.近年來(lái),我國(guó)外賣業(yè)發(fā)展迅猛,外賣小哥穿梭在城市的大街小巷成為一道道亮麗的風(fēng)景線.他們根據(jù)外賣平臺(tái)提供的信息到外賣店取單,某外賣小哥每天來(lái)往于r個(gè)外賣店(外賣店的編號(hào)分別為1,2,…,r,其中),約定:每天他首先從1號(hào)外賣店取單,稱為第1次取單,之后,他等可能的前往其余個(gè)外賣店中的任何一個(gè)店取單,稱為第2次取單,依此類推.假設(shè)從第2次取單開始,他每次都是從上次取單的店之外的個(gè)外賣店取單.設(shè)事件表示“第k次取單恰好是從1號(hào)店取單()”,是事件發(fā)生的概率,顯然,,則______,與的關(guān)系式為______15.已知為拋物線上任意一點(diǎn),為拋物線的焦點(diǎn),為平面內(nèi)一定點(diǎn),則的最小值為__________.16.定義在上的函數(shù)滿足:有成立且,則不等式的解集為__________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線與直線交于點(diǎn).(1)求過(guò)點(diǎn)且平行于直線的直線的方程,并求出兩平行直線間的距離;(2)求過(guò)點(diǎn)并且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線的方程.18.(12分)在四棱錐中,底面是直角梯形,,,,分別是棱,的中點(diǎn)(1)證明:平面;(2)若,且四棱錐的體積是6,求三棱錐的體積19.(12分)已知直線,,,其中與交點(diǎn)為P(1)求過(guò)點(diǎn)P且與平行的直線方程;(2)求以點(diǎn)P為圓心,截所得弦長(zhǎng)為8的圓的方程20.(12分)已知橢圓C與橢圓有相同的焦點(diǎn),且離心率為.(1)橢圓C的標(biāo)準(zhǔn)方程;(2)若橢圓C的兩個(gè)焦點(diǎn),P是橢圓上的點(diǎn),且,求的面積.21.(12分)在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的左、右焦點(diǎn)分別為,其離心率,且橢圓C經(jīng)過(guò)點(diǎn).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)M作兩條不同的直線與橢圓C分別交于點(diǎn)A,B(均異于點(diǎn)M).若∠AMB的角平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請(qǐng)給予證明;若不是,請(qǐng)說(shuō)明理由.22.(10分)已知拋物線過(guò)點(diǎn).(1)求拋物線方程;(2)若直線與拋物線交于兩點(diǎn)兩點(diǎn)在軸的兩側(cè),且,求證:過(guò)定點(diǎn).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)充分不必要條件的定義和圓心到軸的距離求出可得答案.【詳解】時(shí),圓的圓心坐標(biāo)為,半徑為2,此時(shí)圓與軸相切;當(dāng)圓與軸相切時(shí),因?yàn)閳A的半徑為2,所以圓心到軸的距離為,所以,“”是“圓與軸相切”的充分不必要條件故選:A2、B【解析】因?yàn)殡S機(jī)事件指的是在一定條件下,可能發(fā)生,也可能不發(fā)生的事件,只需逐一判斷4個(gè)事件哪一個(gè)符合這種情況即可【詳解】解:連續(xù)兩次拋擲同一個(gè)骰子,兩次都出現(xiàn)2點(diǎn)這一事件可能發(fā)生也可能不發(fā)生,①是隨機(jī)事件某人買彩票中獎(jiǎng)這一事件可能發(fā)生也可能不發(fā)生,②是隨機(jī)事件從集合,2,中任取兩個(gè)元素,它們的和必大于2,③是必然事件在標(biāo)準(zhǔn)大氣壓下,水加熱到時(shí)才會(huì)沸騰,④是不可能事件故隨機(jī)事件有2個(gè),故選:B3、B【解析】設(shè)影長(zhǎng)依次成等差數(shù)列,公差為,根據(jù)題意結(jié)合等差數(shù)列的通項(xiàng)公式及前項(xiàng)和公式求出首項(xiàng)和公差,即可得出答案.【詳解】解:設(shè)影長(zhǎng)依次成等差數(shù)列,公差為,則,前9項(xiàng)之和,即,解得,所以立春的日影長(zhǎng)為.故選:B.4、B【解析】構(gòu)造函數(shù),可知函數(shù)為奇函數(shù),利用導(dǎo)數(shù)分析出函數(shù)在上的單調(diào)性,并得出,然后分別在和解不等式,由此可得出不等式的解集.【詳解】構(gòu)造函數(shù),該函數(shù)的定義域?yàn)椋捎诤瘮?shù)為上的奇函數(shù),則,所以,函數(shù)為上的奇函數(shù),且,,.當(dāng)時(shí),,此時(shí),函數(shù)單調(diào)遞增,由,可得,解得;當(dāng)時(shí),則函數(shù)單調(diào)遞增,由,可得,解得.綜上所述,使得成立的的取值范圍是.故選:B.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性求解函數(shù)不等式,根據(jù)導(dǎo)數(shù)不等式的結(jié)構(gòu)構(gòu)造合適的函數(shù)是解題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.5、D【解析】先找臨界情況當(dāng)PQ與圓C相切時(shí),,進(jìn)而可得滿足條件的點(diǎn)P形成的圖形為大圓(包括內(nèi)部),即求.【詳解】當(dāng)PQ與圓C相切時(shí),,這種情況為臨界情況,當(dāng)P往外時(shí)無(wú)法找到點(diǎn)Q使,當(dāng)P往里時(shí),可以找到Q使,故滿足條件的點(diǎn)P形成的圖形為大圓(包括內(nèi)部),如圖,由圓,可知圓心,半徑為1,則大圓的半徑為,∴所有滿足條件的點(diǎn)P構(gòu)成圖形的面積為.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是找出臨界情況時(shí)點(diǎn)所滿足的條件,進(jìn)而即可得到動(dòng)點(diǎn)滿足條件的圖形,問題即可解決.6、A【解析】先求出漸近線方程,進(jìn)而將點(diǎn)代入直線方程得到a,b關(guān)系,進(jìn)而求出離心率.【詳解】由題意,雙曲線的漸近線方程為:,而一條漸近線過(guò)點(diǎn),則,.故選:A.7、D【解析】根據(jù)命題及其關(guān)系、充分條件與必要條件、導(dǎo)數(shù)在函數(shù)中應(yīng)用、全稱量詞與存在量詞等相關(guān)知識(shí)一一判斷可得答案.【詳解】解:A,由原命題與逆否命題的構(gòu)成關(guān)系,可知A正確;B,當(dāng)a=2>1時(shí),函數(shù)在定義域內(nèi)是單調(diào)遞增函數(shù),當(dāng)函數(shù)定義域內(nèi)是單調(diào)遞增函數(shù)時(shí),a>1.所以B正確;C,由于存在性命題的否定是全稱命題,所以",使得"的否定是",均有,所以C正確;D,的根不一定是極值點(diǎn),例如:函數(shù),則=0,即x=0就不是極值點(diǎn),所以“若為的極值點(diǎn),則”的逆命題為假命題,故選D.【點(diǎn)睛】本題主要考查命題及其關(guān)系、充分條件與必要條件、導(dǎo)數(shù)在函數(shù)中應(yīng)用、全稱量詞與存在量詞等相關(guān)知識(shí),需牢記并靈活運(yùn)用相關(guān)知識(shí).8、B【解析】直接利用空間向量垂直的坐標(biāo)運(yùn)算即可解決.【詳解】∵∴∴,解得,故選:B.9、B【解析】根據(jù)題意列出方程,利用等比數(shù)列的求和公式計(jì)算n輪傳染后感染的總?cè)藬?shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為,經(jīng)過(guò)n輪傳染,總共感染人數(shù)為:即,解得,所以感染人數(shù)由1個(gè)初始感染者增加到1000人大約需要24天,故選:B【點(diǎn)睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡(jiǎn)化運(yùn)算過(guò)程10、A【解析】由題意知,圓C是的旁切圓,點(diǎn)是圓C與軸的切點(diǎn),設(shè)圓C與直線的延長(zhǎng)線、分別相切于點(diǎn)、,由切線的性質(zhì)可知:,,,結(jié)合橢圓的定義,即可得出結(jié)果.【詳解】由題意知,圓C是的旁切圓,點(diǎn)是圓C與軸的切點(diǎn),設(shè)圓C與直線的延長(zhǎng)線、分別相切于點(diǎn)、,則由切線的性質(zhì)可知:,,,所以,所以,所以.故選A【點(diǎn)睛】本題主要考查圓與圓錐曲線的綜合,熟記橢圓的定義,以及切線的性質(zhì)即可,屬于常考題型.11、A【解析】作出可行域,利用代數(shù)式的幾何意義,利用數(shù)形結(jié)合可求得的最大值.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立可得,即點(diǎn),代數(shù)式的幾何意義是連接可行域內(nèi)一點(diǎn)與定點(diǎn)連線的斜率,由圖可知,當(dāng)點(diǎn)在可行域內(nèi)運(yùn)動(dòng)時(shí),直線的傾斜角為銳角,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線的傾斜角最大,此時(shí)取最大值,即.故選:A.12、D【解析】利用空間向量的線性運(yùn)算即可求解.【詳解】解:∵N為BC的中點(diǎn),點(diǎn)M在線段OA上,且OM=2MA,且,,,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】設(shè)出直線的方程,通過(guò)聯(lián)立直線的方程和漸近線的方程,結(jié)合中點(diǎn)的坐標(biāo)來(lái)求得直線的斜率.【詳解】雙曲線,,漸近線方程為,設(shè)直線的方程為,,由,由,所以,所以直線的斜率是.故答案為:14、①.②.【解析】根據(jù)題意,結(jié)合條件概率的計(jì)算公式,即可求解.【詳解】根據(jù)題意,事件表示“第3次取單恰好是從1號(hào)店取單”,因此;同理故答案為:;.15、3【解析】利用拋物線的定義,再結(jié)合圖形即求.【詳解】由題可得拋物線的準(zhǔn)線為,設(shè)點(diǎn)在準(zhǔn)線上的射影為,則根據(jù)拋物線的定義可知,∴要求取得最小值,即求取得最小,當(dāng)三點(diǎn)共線時(shí)最小,為.故答案為:3.16、【解析】由,判斷出函數(shù)的單調(diào)性,利用單調(diào)性解即可【詳解】設(shè),又有成立,函數(shù),即是上的增函數(shù),,即,,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);.(2)或.【解析】(1)首先求得交點(diǎn)坐標(biāo),然后利用待定系數(shù)法確定直線方程,再根據(jù)兩平行直線之間距離公式即可計(jì)算距離;(2)根據(jù)截距式方程的求法解答【小問1詳解】由得設(shè)直線的方程為,代入點(diǎn)坐標(biāo)得,∴直線的方程為∴兩平行線間的距離【小問2詳解】當(dāng)直線過(guò)坐標(biāo)原點(diǎn)時(shí),直線的方程為,即;當(dāng)直線不過(guò)坐標(biāo)原點(diǎn)時(shí),設(shè)直線的方程為,代入點(diǎn)坐標(biāo)得,∴直線的方程的方程為,即綜上所述,直線的方程為或18、(1)證明見解析.(2)2.【解析】(1)取的中點(diǎn),連接,.運(yùn)用面面平行的判定和性質(zhì)可得證;(2)過(guò)點(diǎn)作,垂足為,連接,,設(shè)點(diǎn)到平面的距離為,根據(jù)棱錐的體積求得,再利用三棱錐的體積與三棱錐的體積相等,三棱錐的體積與三棱錐的體積相等,可求得答案.【小問1詳解】證明:如圖,取的中點(diǎn),連接,因?yàn)?,分別是棱,的中點(diǎn),所以,又平面,平面,所以平面因?yàn)?,且,分別是棱,的中點(diǎn),所以,又平面,平面,所以平面因?yàn)槠矫妫?,所以平面平面因?yàn)槠矫?,所以平面【小?詳解】解:過(guò)點(diǎn)作,垂足為,連接,,則四邊形是正方形,從而因?yàn)?,所以,則,從而直角梯形的面積設(shè)點(diǎn)到平面的距離為,則四棱錐的體積,解得因?yàn)槿忮F的體積與三棱錐的體積相等,所以三棱錐的體積因?yàn)槠矫妫匀忮F的體積與三棱錐的體積相等,所以三棱錐的體積為219、(1);(2).【解析】(1)首先求、的交點(diǎn)坐標(biāo),根據(jù)的斜率,應(yīng)用點(diǎn)斜式寫出過(guò)P且與平行的直線方程;(2)根據(jù)弦心距、弦長(zhǎng)、半徑的關(guān)系求圓的半徑,結(jié)合P的坐標(biāo)寫出圓的方程.【小問1詳解】聯(lián)立、得:,可得,故,又的斜率為,則過(guò)P且與平行的直線方程,∴所求直線方程為.【小問2詳解】由(1),P到的距離,∴以P為圓心,截所得弦長(zhǎng)為8的圓的半徑,∴所求圓的方程為.20、(1)(2)【解析】(1)由題意求出即可求解;(2)由橢圓的定義和三角形面積公式求解即可【小問1詳解】因?yàn)闄E圓C與橢圓有相同的焦點(diǎn),所以橢圓C的焦點(diǎn),,,又,所以,,所以橢圓C的標(biāo)準(zhǔn)方程為.【小問2詳解】由,,得,,而,所以,所以21、(1)(2)是,證明見解析【解析】(1)根據(jù)離心率及橢圓上的點(diǎn)可求解;(2)根據(jù)題意分別設(shè)出直線MA、MB,與橢圓聯(lián)立后得到相關(guān)點(diǎn)的坐標(biāo),再通過(guò)斜率公式計(jì)算即可證明.【小問1詳解】由,得,所以a2=9b2①,又橢圓過(guò)點(diǎn),則②,由①②解得a=6,b=2,所以橢圓
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度醫(yī)療用品供應(yīng)協(xié)議范例
- 2024新住宅買賣協(xié)議封面樣本
- 搪瓷制品的花紋與紋理設(shè)計(jì)考核試卷
- 體育場(chǎng)排球場(chǎng)網(wǎng)布質(zhì)量檢測(cè)方法考核試卷
- 《結(jié)構(gòu)化環(huán)境無(wú)人駕駛物流運(yùn)輸車運(yùn)動(dòng)規(guī)劃研究》
- 2024年瓶蓋銷售協(xié)議范本
- 《具有形狀記憶功能杜仲膠復(fù)合材料的制備與性能研究》
- 2024年事業(yè)單位職工勞動(dòng)協(xié)議范本
- 《旅游業(yè)動(dòng)態(tài)跟蹤及趨勢(shì)洞察月報(bào)(2024年8月)》范文
- 《基于UTAUT2模型的虛擬學(xué)術(shù)社區(qū)用戶持續(xù)使用意愿影響因素研究》
- 全國(guó)醫(yī)療服務(wù)價(jià)格項(xiàng)目規(guī)范(2012版)
- 一次性付款房屋買賣合同
- 組織行為學(xué)案例分析 組織行為學(xué)案例分析
- 重大事故隱患數(shù)據(jù)表
- 供應(yīng)鏈管理(第3版)高職PPT完整全套教學(xué)課件
- 急性扁桃體炎病人的護(hù)理
- 清淤、清表施工方案
- 悅納兒童的文化生長(zhǎng)東莞市莞城中心小學(xué)“悅納教育”的思與行
- 碳酸氫鎂介穩(wěn)溶液應(yīng)用于萃取分離稀土過(guò)程中的基礎(chǔ)研究
- 城市地下綜合管廊施工組織設(shè)計(jì)
- 中國(guó)舞蹈考級(jí)細(xì)則
評(píng)論
0/150
提交評(píng)論