廣東佛山市禪城區(qū)2025屆數(shù)學高二上期末復習檢測試題含解析_第1頁
廣東佛山市禪城區(qū)2025屆數(shù)學高二上期末復習檢測試題含解析_第2頁
廣東佛山市禪城區(qū)2025屆數(shù)學高二上期末復習檢測試題含解析_第3頁
廣東佛山市禪城區(qū)2025屆數(shù)學高二上期末復習檢測試題含解析_第4頁
廣東佛山市禪城區(qū)2025屆數(shù)學高二上期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東佛山市禪城區(qū)2025屆數(shù)學高二上期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數(shù)列是等比數(shù)列,是其前n項之積,若,則的值是()A.1024 B.256C.2 D.5122.設(shè),則當數(shù)列{an}的前n項和取得最小值時,n的值為()A.4 B.5C.4或5 D.5或63.若,則實數(shù)的取值范圍是()A. B.C. D.4.圓心在x軸上且過點的圓與y軸相切,則該圓的方程是()A. B.C. D.5.如圖,在直三棱柱中,且,點E為中點.若平面過點E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個 B.2個C.3個 D.4個6.在等差數(shù)列中,若,則的值為()A. B.C. D.7.函數(shù),則曲線在點處的切線方程為()A. B.C. D.8.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.59.已知中,角,,的對邊分別為,,,且,,成等比數(shù)列,則這個三角形的形狀是()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.鈍角三角形10.曲線在點處的切線方程是()A. B.C. D.11.為了解青少年視力情況,統(tǒng)計得到名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數(shù),葉表示十分位數(shù),則該組數(shù)據(jù)的中位數(shù)是()A. B.C. D.12.若直線經(jīng)過,,兩點,則直線的傾斜角的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),,若將函數(shù)的圖像向左平移個單位能使其圖像與原圖像重合,則正實數(shù)的最小值為___________.14.雙曲線上的一點到一個焦點的距離等于1,那么點到另一個焦點的距離為_________.15.雙曲線的離心率______.16.已知橢圓和雙曲線有相同的焦點和,設(shè)橢圓和雙曲線的離心率分別為,,P為兩曲線的一個公共點,且(O為坐標原點).若,則的取值范圍是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某微小企業(yè)員工的年齡分布莖葉圖如圖所示:(1)求該公司員工年齡的極差和第25百分位數(shù);(2)從該公司員工中隨機抽取一位,記所抽取員工年齡在區(qū)間內(nèi)為事件,所抽取員工年齡在區(qū)間內(nèi)為事件,判斷事件與是否互相獨立,并說明理由;18.(12分)在一次重大軍事聯(lián)合演習中,以點為中心的海里以內(nèi)海域被設(shè)為警戒區(qū)域,任何船只不得經(jīng)過該區(qū)域.已知點正北方向海里處有一個雷達觀測站,某時刻測得一艘勻速直線行駛的船只位于點北偏東,且與點相距海里的位置,經(jīng)過小時又測得該船已行駛到位于點北偏東,且與點相距海里的位置(1)求該船的行駛速度(單位:海里/小時);(2)該船能否不改變方向繼續(xù)直線航行?請說明理由19.(12分)一位父親在孩子出生后,每月給小孩測量一次身高,得到前7個月的數(shù)據(jù)如下表所示.月齡1234567身高(單位:厘米)52566063656870(1)求小孩前7個月的平均身高;(2)求出身高y關(guān)于月齡x的回歸直線方程(計算結(jié)果精確到整數(shù)部分);(3)利用(2)的結(jié)論預測一下8個月的時候小孩的身高參考公式:20.(12分)已知為等差數(shù)列,是各項均為正數(shù)的等比數(shù)列的前n項和,,,,在①;②;③.這三個條件中任選其中一個,補充在上面的橫線上,并完成下面問題的解答(如果選擇多個條件解答,則按選擇的第一個解答計分)(1)求數(shù)列和的通項公式;(2)求數(shù)列的前n項和.21.(12分)已知正項等差數(shù)列滿足,(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和22.(10分)在二項式的展開式中;(1)若,求常數(shù)項;(2)若第4項的系數(shù)與第7項的系數(shù)比為,求:①二項展開式中的各項的二項式系數(shù)之和;②二項展開式中各項的系數(shù)之和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設(shè)數(shù)列的公比為q,由已知建立方程求得q,再利用等比數(shù)列的通項公式可求得答案.【詳解】解:因為數(shù)列是等比數(shù)列,是其前n項之積,,設(shè)數(shù)列的公比為q,所以,解得,所以,故選:D.2、A【解析】結(jié)合等差數(shù)列的性質(zhì)得到,解不等式組即可求出結(jié)果.【詳解】由,即,解得,因為,故.故選:A.3、B【解析】由題意可知且,構(gòu)造函數(shù),可得出,由函數(shù)的單調(diào)性可得出,利用導數(shù)求出函數(shù)的最小值,可得出關(guān)于的不等式,由此可解得實數(shù)的取值范圍.【詳解】因為,則且,由已知可得,構(gòu)造函數(shù),其中,,所以,函數(shù)為上的增函數(shù),由已知,所以,,可得,構(gòu)造函數(shù),其中,則.當時,,此時函數(shù)單調(diào)遞減,當時,,此時函數(shù)單調(diào)遞增,則,所以,,解得.故選:B.4、A【解析】根據(jù)題意設(shè)出圓的方程,列式即可求出【詳解】依題可設(shè)圓的方程為,所以,解得即圓的方程是故選:A5、B【解析】構(gòu)造出長方體,取中點連接然后利用臨界位置分情況討論即可.【詳解】如圖,構(gòu)造出長方體,取中點,連接則所有過點與成角的平面,均與以為軸的圓錐相切,過點繞且與成角,當與水平面垂直且在面的左側(cè)(在長方體的外面)時,與面所成角為75°(與面成45°,與成30°),過點繞旋轉(zhuǎn),轉(zhuǎn)一周,90°顯然最大,到了另一個邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過程中,有兩次角為30

,綜上,這樣的平面α有2個,故選:B.6、C【解析】利用等差數(shù)列性質(zhì)可求得,由可求得結(jié)果.【詳解】由等差數(shù)列性質(zhì)知:,,解得:;又,.故選:C.7、D【解析】對函數(shù)求導,利用導數(shù)的幾何意義求出切線斜率即可計算作答.【詳解】依題意,,即有,而,則過點,斜率為1的直線方程為:,所以曲線在點處切線方程為.故選:D8、C【解析】畫出約束條件的可行域,利用目標函數(shù)的幾何意義即可求解【詳解】作出可行域如圖所示,把目標函數(shù)轉(zhuǎn)化為,平移,經(jīng)過點時,縱截距最大,所以的最大值為4.故選:C9、B【解析】根據(jù)題意求出,結(jié)合余弦定理分情況討論即可.【詳解】解:因為,所以.由題意得,利用余弦定理得:.當,即時,,即,解得:.此時三角形為等邊三角形;當,即時,,不成立.所以三角形的形狀是等邊三角形.故選:B.【點睛】本題主要考查利用余弦定理判斷三角形的形狀,屬于基礎(chǔ)題.10、B【解析】求導,得到曲線在點處的斜率,寫出切線方程.【詳解】因為,所以曲線在點處斜率為4,所以曲線在點處的切線方程是,即,故選:B11、B【解析】將樣本中的數(shù)據(jù)由小到大進行排列,利用中位數(shù)的定義可得結(jié)果.【詳解】將樣本中的數(shù)據(jù)由小到大進行排列,依次為:、、、、、、、、、,因此,這組數(shù)據(jù)的中位數(shù)為.故選:B.12、D【解析】應用兩點式求直線斜率得,結(jié)合及,即可求的范圍.【詳解】根據(jù)題意,直線經(jīng)過,,,∴直線的斜率,又,∴,即,又,∴;故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)正弦型函數(shù)圖像平移法則和正弦函數(shù)性質(zhì)進行解題.【詳解】解:由題意得:函數(shù)的圖像向左平移個單位后得:該函數(shù)與原函數(shù)圖像重合故可知,即故當時,最小正實數(shù).故答案為:14、【解析】首先將已知的雙曲線方程轉(zhuǎn)化為標準方程,然后根據(jù)雙曲線的定義知雙曲線上的點到兩個焦點的距離之差的絕對值為,即可求出點到另一個焦點的距離為17.考點:雙曲線的定義.15、【解析】根據(jù)雙曲線方程直接可得離心率.【詳解】由,可得,,故,離心率,故答案為:.16、【解析】設(shè)出半焦距c,用表示出橢圓的長半軸長、雙曲線的實半軸長,由可得為直角三角形,由此建立關(guān)系即可計算作答.【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對稱性知,不妨令焦點和在x軸上,點P在y軸右側(cè),由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點,因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)極差為;第25百分位數(shù)為(2)事件和相互獨立,理由見解析【解析】(1)根據(jù)定義直接計算極差和百分位數(shù)得到答案.(2)計算得到,,,即,得到答案.【小問1詳解】員工年齡的極差為,,故第25百分位數(shù)為.【小問2詳解】,,,故,故事件和相互獨立.18、(1)海里/小時;(2)該船要改變航行方向,理由見解析.【解析】(1)設(shè)一個單位為海里,建立以為坐標原點,正東、正北方向分別為、軸的正方向建立平面直角坐標系,計算出,即可求得該船的行駛速度;(2)求出直線的方程,計算出點到直線的距離,可得出結(jié)論.【小問1詳解】解:設(shè)一個單位為海里,建立以為坐標原點,正東、正北方向分別為、軸的正方向建立如下圖所示的平面直角坐標系,則坐標平面中,,且,,則、、,,所以,所以、兩地的距離為海里,所以該船行駛的速度為海里/小時.【小問2詳解】解:直線的斜率為,所以直線的方程為,即,所以點到直線的距離為,所以直線會與以為圓心,以個單位長為半徑的圓相交,因此該船要改變航行方向,否則會進入警戒區(qū)域19、(1)62;(2);(3)74.【解析】(1)直接利用平均數(shù)的計算公式即可求解;(2)套公式求出b、a,求出回歸方程;(3)把x=8代入回歸方程即可求出.【小問1詳解】小孩前7個月的平均身高為.【小問2詳解】(2)設(shè)回歸直線方程是.由題中的數(shù)據(jù)可知.,..計算結(jié)果精確到整數(shù)部分,所以,于是,所以身高y關(guān)于月齡x的回歸直線方程為.【小問3詳解】由(2)知,.當x=8時,y=3×8+50=74,所以預測8個月的時候小孩的身高為74厘米.20、(1)無論選擇哪個條件答案均為;(2).【解析】(1)先根據(jù)題設(shè)條件求解,然后根據(jù)選擇的條件求解;(2)先求,然后利用分組求和的方法求解.【小問1詳解】設(shè)的公差為,因為,;所以,解得,所以.選①:設(shè)的公比為,則;由題意得,因為,所以,解得或(舍);所以.選②:由,當時,,因為,所以;當時,,整理得;即是首項和公比均為2的等比數(shù)列,所以.選③:因為,,所以,解得;所以.【小問2詳解】由(1)得;所以.21

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論