陜西省育才中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第1頁
陜西省育才中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第2頁
陜西省育才中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第3頁
陜西省育才中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第4頁
陜西省育才中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

陜西省育才中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,已知三棱錐,點(diǎn),分別為,的中點(diǎn),且,,,用,,表示,則等于()A. B.C. D.2.若向量則()A. B.3C. D.3.已知空間向量,,,下列命題中正確的個數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對任意一個空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個基底.A.0 B.1C.2 D.34.設(shè)拋物線C:的焦點(diǎn)為,準(zhǔn)線為.是拋物線C上異于的一點(diǎn),過作于,則線段的垂直平分線()A.經(jīng)過點(diǎn) B.經(jīng)過點(diǎn)C.平行于直線 D.垂直于直線5.已知F是雙曲線的右焦點(diǎn),過F且垂直于x軸的直線交E于A,B兩點(diǎn),若E的漸近線上恰好存在四個點(diǎn),,,,使得,則E的離心率的取值范圍是()A. B.C. D.6.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于平面的對稱點(diǎn)為,則()A.-4 B.-10C.4 D.107.等比數(shù)列的各項(xiàng)均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.8.已知圓,圓C2:x2+y2-x-4y+7=0,則“a=1”是“兩圓內(nèi)切”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件9.已知拋物線C:,則過拋物線C的焦點(diǎn),弦長為整數(shù)且不超過2022的直線的條數(shù)是()A.4037 B.4044C.2019 D.202210.?dāng)?shù)列滿足,,,則數(shù)列的前8項(xiàng)和為()A.25 B.26C.27 D.2811.過橢圓的左焦點(diǎn)作弦,則最短弦的長為()A. B.2C. D.412.已知函數(shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,則“對任意的,”是“在上為增函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在直三棱柱中,,為中點(diǎn),則平面與平面夾角的正切值為___________.14.若無論實(shí)數(shù)取何值,直線與圓恒有兩個公共點(diǎn),則實(shí)數(shù)的取值范圍為___________.15.設(shè)函數(shù),,若存在,成立,則實(shí)數(shù)的取值范圍為__________.16.記為等差數(shù)列的前n項(xiàng)和.若,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)要設(shè)計一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設(shè)計才能使得總成本最低?18.(12分)已知等比數(shù)列的前項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.19.(12分)已知函數(shù).(1)當(dāng)時,求函數(shù)的極值;(2)若對,恒成立,求的取值范圍.20.(12分)在中,內(nèi)角的對邊分別是,且(1)求角的大小(2)若,且,求的面積21.(12分)求滿足下列條件的曲線的方程:(1)離心率為,長軸長為6的橢圓的標(biāo)準(zhǔn)方程(2)與橢圓有相同焦點(diǎn),且經(jīng)過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程22.(10分)已知與定點(diǎn),的距離比為的點(diǎn)P的軌跡為曲線C,過點(diǎn)的直線l與曲線C交于M,N兩點(diǎn).(1)求曲線C的軌跡方程;(2)若,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】連接,先根據(jù)已知條件表示出,再根據(jù)求得結(jié)果.【詳解】連接,如下圖所示:因?yàn)闉榈闹悬c(diǎn),所以,又因?yàn)闉榈闹悬c(diǎn),所以,所以,故選:A.2、D【解析】先求得,然后根據(jù)空間向量模的坐標(biāo)運(yùn)算求得【詳解】由于向量,,所以.故故選:D3、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯誤;若非零向量共面,則向量可以在一個與組成的平面平行的平面上,故②錯誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個基底,故④錯誤;故選:C.4、A【解析】依據(jù)題意作出焦點(diǎn)在軸上的開口向右的拋物線,根據(jù)垂直平分線的定義和拋物線的定義可知,線段的垂直平分線經(jīng)過點(diǎn),即可求解.【詳解】如圖所示:因?yàn)榫€段的垂直平分線上的點(diǎn)到的距離相等,又點(diǎn)在拋物線上,根據(jù)定義可知,,所以線段的垂直平分線經(jīng)過點(diǎn).故選:A.5、D【解析】由題意以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點(diǎn),則必有,又當(dāng)圓M經(jīng)過原點(diǎn)時此時以AB為直徑的圓M上與雙曲線E的漸近線有三個不同的交點(diǎn),不滿足,從而得出答案.【詳解】由題意,由得,雙曲線的漸近線方程為所以,由,可知,,,在以AB為直徑的圓M上,圓的半徑為即以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點(diǎn)當(dāng)圓M與漸近線相切時,圓心到漸近線的距離,則必有,即,則雙曲線E的離心率,所以又當(dāng)圓M經(jīng)過原點(diǎn)時,,解得E的離心率為,此時以AB為直徑圓M與雙曲線E的漸近線有三個不同的交點(diǎn),不滿足條件.所以E的離心率的取值范圍是.故選:D6、A【解析】根據(jù)關(guān)于平面對稱的點(diǎn)的規(guī)律:橫坐標(biāo)、縱坐標(biāo)保持不變,豎坐標(biāo)變?yōu)樗南喾磾?shù),即可求出點(diǎn)關(guān)于平面的對稱點(diǎn)的坐標(biāo),再利用向量的坐標(biāo)運(yùn)算求.【詳解】解:由題意,關(guān)于平面對稱的點(diǎn)橫坐標(biāo)、縱坐標(biāo)保持不變,豎坐標(biāo)變?yōu)樗南喾磾?shù),從而有點(diǎn)關(guān)于對稱的點(diǎn)的坐標(biāo)為(2,?1,-3).故選:A【點(diǎn)睛】本題以空間直角坐標(biāo)系為載體,考查點(diǎn)關(guān)于面的對稱,考查數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題7、C【解析】利用數(shù)量積運(yùn)算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運(yùn)算性質(zhì)即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質(zhì)可得:=……===2,則log2(?)=故選C【點(diǎn)睛】本題考查數(shù)量積運(yùn)算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運(yùn)算性質(zhì),考查推理能力與計算能力,屬于中檔題8、B【解析】先得出圓的圓心和半徑,求出兩圓心間的距離,半徑之差,根據(jù)兩圓內(nèi)切得出方程,從而得出答案.【詳解】圓的圓心半徑的圓心半徑兩圓心之間的距離為兩圓的半徑之差為當(dāng)兩圓內(nèi)切時,,解得或所以當(dāng),可得兩圓內(nèi)切,當(dāng)兩圓內(nèi)切時,不能得出(可能)故“”是“兩圓內(nèi)切”的充分不必要條件故選:B9、A【解析】根據(jù)已知條件,結(jié)合拋物線的性質(zhì),先求出過焦點(diǎn)的最短弦長,再結(jié)合拋物線的對稱性,即可求解【詳解】∵拋物線C:,即,由拋物線的性質(zhì)可得,過拋物線焦點(diǎn)中,長度最短的為垂直于y軸的那條弦,則過拋物線C的焦點(diǎn),長度最短的弦的長為,由拋物線的對稱性可得,弦長在5到2022之間的有共有條,故弦長為整數(shù)且不超過2022的直線的條數(shù)是故選:A10、C【解析】根據(jù)通項(xiàng)公式及求出,從而求出前8項(xiàng)和.【詳解】當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,則數(shù)列的前8項(xiàng)和為.故選:C11、A【解析】求出橢圓的通徑,即可得到結(jié)果【詳解】過橢圓的左焦點(diǎn)作弦,則最短弦的長為橢圓的通徑:故選:A12、A【解析】根據(jù)充分條件與必要條件的概念,由導(dǎo)函數(shù)的正負(fù)與函數(shù)單調(diào)性之間關(guān)系,即可得出結(jié)果.【詳解】因?yàn)楹瘮?shù)是區(qū)間上的可導(dǎo)函數(shù),且導(dǎo)函數(shù)為,若“對任意的,”,則在上為增函數(shù);若在上為增函數(shù),則對任意的恒成立,即由“對任意的,”能推出“在上為增函數(shù)”;由“在上為增函數(shù)”不能推出“對任意的,”,因此“對任意的,”是“在上為增函數(shù)”的充分不必要條件.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由條件可得均為等腰直角三角形,從而,先證明平面,從而,即得到為平面與平面夾角的平面角,從而可求解.【詳解】由,則,則在直三棱柱中,平面,又平面,則又,所以平面平面,所以由由條件可得均為等腰直角三角形,則所以,即,由所以平面,又平面所以,即為平面與平面夾角的平面角.在直角中,所以故答案為:14、【解析】根據(jù)點(diǎn)到直線的距離公式得到,根據(jù),解不等式得到答案.【詳解】依題意有圓心到直線的距離,即,又無論取何值,,故,故.故答案:15、【解析】由不等式分離參數(shù),令,則求即可【詳解】由,得,令,則當(dāng)時,;當(dāng)時,;所以在上單調(diào)遞減,在上單調(diào)遞增,故由于存在,成立,則故答案為:16、5【解析】根據(jù)等差數(shù)列前項(xiàng)和的公式及等差數(shù)列的性質(zhì)即可得出答案.【詳解】解:,所以.故答案為:5.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、當(dāng)圓柱底面半徑為,高為時,總成本最底.【解析】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進(jìn)而根據(jù)體積得到,然后求出表面積,進(jìn)而運(yùn)用導(dǎo)數(shù)的方法求得表面積的最小值,此時成本最小.【詳解】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價為元,由題意得:,則,表面積造價,,令,得,令,得,的單調(diào)遞減區(qū)間為,遞增區(qū)間為,當(dāng)圓柱底面半徑為,高為時,總成本最底.18、(1)(2)【解析】(1)根據(jù)得到,再結(jié)合為等比數(shù)列求出首項(xiàng),進(jìn)而求得數(shù)列的通項(xiàng)公式;(2)由(1)求得數(shù)列的通項(xiàng)公式,進(jìn)而利用公式法即可求出【小問1詳解】解:(1),,當(dāng)時,,即,又,為等比數(shù)列,所以,,數(shù)列的通項(xiàng)公式為【小問2詳解】(2)由(1)知,則,數(shù)列的前項(xiàng)和19、(1)極小值為,無極大值;(2).【解析】(1)對函數(shù)進(jìn)行求導(dǎo)、列表、判斷函數(shù)的單調(diào)性,最后根據(jù)函數(shù)極值的定義進(jìn)行求解即可;(2)對進(jìn)行常變量分離,然后構(gòu)造新函數(shù),對新函數(shù)進(jìn)行求導(dǎo),判斷其單調(diào)性,進(jìn)而求出新函數(shù)的最值,最后根據(jù)題意求出的取值范圍即可.【詳解】(1)函數(shù)的定義域?yàn)?,?dāng)時,.由,得.當(dāng)變化時,,的變化情況如下表-0+單調(diào)遞減極小值單調(diào)遞增所以在上單調(diào)遞減,上單調(diào)遞增,所以函數(shù)的極小值為,無極大值.(2)對,恒成立,即對,恒成立.令,則.由得,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,所以,因此.所以的取值范圍是.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值,考查了構(gòu)造函數(shù)法、常變量分離法,考查了數(shù)學(xué)運(yùn)算能力和分類討論思想.20、(1);(2)【解析】(1)根據(jù),通過余弦定理求解.(2)根據(jù),通過正弦定理,把角轉(zhuǎn)化為邊得,再根據(jù),得.再代入的面積公式求解.【詳解】(1)∵,∴由余弦定理得,又,∴.(2)∵,∴由正弦定理得,∵,∴,又,∴∴面積【點(diǎn)睛】本題主要考查余弦定理和正弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.21、(1)或;(2)【解析】(1)根據(jù)題意,由橢圓的幾何性質(zhì)可得a、c的值,計算可得b的值,討論橢圓焦點(diǎn)的位置,求出橢圓的標(biāo)準(zhǔn)方程,即可得答案;(2)根據(jù)題意,求出橢圓的焦點(diǎn)坐標(biāo),進(jìn)而可以設(shè)雙曲線的方程為,分析可得和,解可得a、b的值,即可得答案【詳解】解:(1)根據(jù)題意,要求橢圓的長軸長為6,離心率為,則,,解可得:,;則,若橢圓的焦點(diǎn)在x軸上,其方程為,若橢圓的焦點(diǎn)在y軸上,其方程為,綜合可得:橢圓的標(biāo)準(zhǔn)方程為或;(2)根據(jù)題意,橢圓的焦點(diǎn)為和,故要求雙曲線的方程為,且,則有,又由雙曲線經(jīng)過經(jīng)過點(diǎn),則有,,聯(lián)立可得:,故雙曲線方程為:【點(diǎn)睛】本題考查橢圓、雙曲線的標(biāo)準(zhǔn)方程的求法,涉及橢圓、雙曲線的幾何性質(zhì),屬于基礎(chǔ)題22、(1)(2)或【解析】(1)設(shè)曲線上的任意一點(diǎn),由題意可得,化簡即可得出(2)分直線的斜率不存在與存在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論