版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣西百色市2025屆數(shù)學(xué)高二上期末調(diào)研試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若點(diǎn)P為拋物線y=2x2上的動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),則|PF|的最小值為()A.2 B.C. D.2.?dāng)?shù)學(xué)中的數(shù)形結(jié)合也可以組成世間萬(wàn)物的絢麗畫(huà)面,-些優(yōu)美的曲線是數(shù)學(xué)形象美、對(duì)稱(chēng)美、和諧美的產(chǎn)物.曲線C:為四葉玫瑰線.①方程(xy<0)表示的曲線在第二和第四象限;②曲線C上任一點(diǎn)到坐標(biāo)原點(diǎn)0的距離都不超過(guò)2;③曲線C構(gòu)成的四葉玫瑰線面積大于4π;④曲線C上有5個(gè)整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).則上述結(jié)論中正確的個(gè)數(shù)是()A.1 B.2C.3 D.43.用斜二測(cè)畫(huà)法畫(huà)出邊長(zhǎng)為2的正方形的直觀圖,則直觀圖的面積為()A. B.C.4 D.4.某市要對(duì)兩千多名出租車(chē)司機(jī)的年齡進(jìn)行調(diào)查,現(xiàn)從中隨機(jī)抽出100名司機(jī),已知抽到的司機(jī)年齡都在[20,45]歲之間,根據(jù)調(diào)查結(jié)果得出司機(jī)的年齡情況殘缺的頻率分布直方圖如圖所示,利用這個(gè)殘缺的頻率分布直方圖估計(jì)該市出租車(chē)司機(jī)年齡的中位數(shù)大約是()A.31.6歲 B.32.6歲C.33.6歲 D.36.6歲5.直線與圓相交于點(diǎn),點(diǎn)是坐標(biāo)原點(diǎn),若是正三角形,則實(shí)數(shù)的值為A.1 B.-1C. D.6.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.設(shè)雙曲線的離心率為,則下列命題中是真命題的為()A.越大,雙曲線開(kāi)口越小 B.越小,雙曲線開(kāi)口越大C.越大,雙曲線開(kāi)口越大 D.越小,雙曲線開(kāi)口越大8.中國(guó)古代《易經(jīng)》一書(shū)中記載,人們通過(guò)在繩子上打結(jié)來(lái)記錄數(shù)據(jù),即“結(jié)繩計(jì)數(shù)”,如圖,一位古人在從右到左(即從低位到高位)依次排列的紅繩子上打結(jié),滿六進(jìn)一,用6來(lái)記錄每年進(jìn)的錢(qián)數(shù),由圖可得,這位古人一年收入的錢(qián)數(shù)用十進(jìn)制表示為()A.180 B.179C.178 D.1779.由直線上的點(diǎn)向圓引切線,則切線長(zhǎng)的最小值為()A. B.C.4 D.210.已知直線的一個(gè)方向向量,平面的一個(gè)法向量,若,則()A.1 B.C.3 D.11.已知空間向量,,且與互相垂直,則k的值是()A.1 B.C. D.12.若兩個(gè)不同平面,的法向量分別為,,則()A.,相交但不垂直 B.C. D.以上均不正確二、填空題:本題共4小題,每小題5分,共20分。13.已知正四面體ABCD中,E,F(xiàn)分別是線段BC,AD的中點(diǎn),點(diǎn)G是線段CD上靠近D的四等分點(diǎn),則直線EF與AG所成角的余弦值為_(kāi)_____14.若等比數(shù)列的前n項(xiàng)和為,且,則__________.15.某古典概型的樣本空間,事件,則___________.16.已知正項(xiàng)數(shù)列的前n項(xiàng)和為,且,則__________,滿足不等式的最大整數(shù)為_(kāi)_________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線與雙曲線交于,兩點(diǎn),為坐標(biāo)原點(diǎn)(1)當(dāng)時(shí),求線段的長(zhǎng);(2)若以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),求的值18.(12分)已知的二項(xiàng)展開(kāi)式中所有項(xiàng)的二項(xiàng)式系數(shù)之和為,(1)求的值;(2)求展開(kāi)式的所有有理項(xiàng)(指數(shù)為整數(shù)),并指明是第幾項(xiàng)19.(12分)某校在全體同學(xué)中隨機(jī)抽取了100名同學(xué),進(jìn)行體育鍛煉時(shí)間的專(zhuān)項(xiàng)調(diào)查.將調(diào)查數(shù)據(jù)按平均每天鍛煉時(shí)間的多少(單位:分鐘)分成五組:,,,,,得到如圖所示的頻率分布直方圖.將平均每天體育鍛煉時(shí)間不少于60分鐘的同學(xué)定義為鍛煉達(dá)標(biāo),平均每天體育鍛煉時(shí)間少于60分鐘的同學(xué)定義為鍛煉不達(dá)標(biāo)(1)求a的值,并估計(jì)該校同學(xué)平均每天體育鍛煉時(shí)間的中位數(shù);(2)在樣本中,對(duì)平均每天體育鍛煉時(shí)間不達(dá)標(biāo)的同學(xué),按分層抽樣的方法抽取6名同學(xué)了解不達(dá)標(biāo)的原因,再?gòu)倪@6名同學(xué)中隨機(jī)抽取2名進(jìn)行調(diào)研,求這2名同學(xué)中至少有一名每天體育鍛煉時(shí)間(單位:分鐘)在內(nèi)的概率20.(12分)在平面直角坐標(biāo)系中,已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合(1)求橢圓的離心率;(2)求拋物線的方程;(3)設(shè)是拋物線上一點(diǎn),且,求點(diǎn)的坐標(biāo)21.(12分)已知命題;命題.(1)若p是q的充分條件,求m的取值范圍;(2)當(dāng)時(shí),已知是假命題,是真命題,求x的取值范圍.22.(10分)已知數(shù)列的前項(xiàng)和為,且.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)拋物線的定義得出當(dāng)點(diǎn)P在拋物線的頂點(diǎn)時(shí),|PF|取最小值.【詳解】根據(jù)題意,設(shè)拋物線y=2x2上點(diǎn)P到準(zhǔn)線的距離為d,則有|PF|=d,拋物線的方程為y=2x2,即x2=y(tǒng),其準(zhǔn)線方程為y=-,∴當(dāng)點(diǎn)P在拋物線的頂點(diǎn)時(shí),d有最小值,即|PF|min=.故選:D2、B【解析】對(duì)于①,由判斷,對(duì)于②,利用基本不等式可判斷,對(duì)于③,以為圓心,2為半徑的圓的面積與曲線圍成的面積進(jìn)行比較即可,對(duì)于④,將和聯(lián)立,求解出兩曲線的切點(diǎn),從而可判斷【詳解】對(duì)于①,由,得異號(hào),方程(xy<0)關(guān)于原點(diǎn)及y=x對(duì)稱(chēng),所以方程(xy<0)表示的曲線在第二和第四象限,所以①正確,對(duì)于②,因?yàn)?,所以,所以,所以,所以由曲線的對(duì)稱(chēng)性可知曲線C上任一點(diǎn)到坐標(biāo)原點(diǎn)0的距離都不超過(guò)2,所以②正確,對(duì)于③,由②可知曲線C上到原點(diǎn)的距離不超過(guò)2,而以為圓心,2為半徑的圓的面積為,所以曲線C構(gòu)成的四葉玫瑰線面積小于4π,所以③錯(cuò)誤,對(duì)于④,將和聯(lián)立,解得,所以可得圓與曲線C相切于點(diǎn),,,,而點(diǎn)(1,1)不滿足曲線方程,所以曲線在第一象限不經(jīng)過(guò)任何整數(shù)點(diǎn),由曲線的對(duì)稱(chēng)性可知曲線在其它象限也不經(jīng)過(guò)任何整數(shù)點(diǎn),所以曲線C上只有1個(gè)整點(diǎn)(0,0),所以④錯(cuò)誤,故選:B3、A【解析】畫(huà)出直觀圖,求出底和高,進(jìn)而求出面積.【詳解】如圖,,,,過(guò)點(diǎn)C作CD⊥x軸于點(diǎn)D,則,所以直觀圖是底為2、高為的平行四邊形,所以面積為.故選:A.4、C【解析】先根據(jù)頻率分布直方圖中頻率之和為計(jì)算出數(shù)據(jù)位于的頻率,再利用頻率分布直方圖中求中位數(shù)的原則求出中位數(shù)【詳解】在頻率分布直方圖中,所有矩形面積之和為,所以,數(shù)據(jù)位于的頻率為,前兩個(gè)矩形的面積之和為,前三個(gè)矩形的面積之和為,所以,中位數(shù)位于區(qū)間,設(shè)中位數(shù)為,則有,解得(歲),故選C【點(diǎn)睛】本題考查頻率分布直方圖的性質(zhì)和頻率分布直方圖中中位數(shù)的計(jì)算,計(jì)算時(shí)要充分利用頻率分布直方圖中中位數(shù)的計(jì)算原理來(lái)計(jì)算,考查計(jì)算能力,屬于中等題5、C【解析】由題意得,直線被圓截得的弦長(zhǎng)等于半徑.圓的圓心坐標(biāo),設(shè)圓半徑為,圓心到直線的距離為,則由條件得,整理得所以,解得.選C6、B【解析】方程表示橢圓,可得,解出的范圍即可判斷出結(jié)論.【詳解】∵方程表示橢圓,∴解得或,故“”是“方程表示橢圓”的必要不充分條件.故選:B7、C【解析】根據(jù)雙曲線的性質(zhì)結(jié)合離心率對(duì)雙曲線開(kāi)口大小的影響即可得解.【詳解】解:對(duì)于A,越大,雙曲線開(kāi)口越大,故A錯(cuò)誤;對(duì)于B,越小,雙曲線開(kāi)口越小,故B錯(cuò)誤;對(duì)于C,由,越大,則越大,雙曲線開(kāi)口越大,故C正確;對(duì)于D,越小,則越小,雙曲線開(kāi)口越小,故D錯(cuò)誤.故選:C.8、D【解析】由于從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,所以從右到左的數(shù)分別為、、,然后把它們相加即可.【詳解】(個(gè)).所以古人一年收入的錢(qián)數(shù)用十進(jìn)制表示為個(gè).故選:D.9、D【解析】切點(diǎn)與圓心的連線垂直于切線,切線長(zhǎng)轉(zhuǎn)化為直線上點(diǎn)與圓心連線和半徑的關(guān)系,利用點(diǎn)到直線的距離公式求出圓心與直線上點(diǎn)距離的最小值,結(jié)合勾股定理即可得出結(jié)果.【詳解】設(shè)為直線上任意一點(diǎn),,切線長(zhǎng)的最小值為:,故選:D.10、D【解析】由向量平行充要條件代入解之即可解決.【詳解】由,可知,則有,解之得故選:D11、D【解析】由=0可求解【詳解】由題意,故選:D12、B【解析】由向量數(shù)量積為0可求.【詳解】∵,,∴,∴,∴,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立空間直角坐標(biāo)系,令正四面體的棱長(zhǎng)為,即可求出點(diǎn)的坐標(biāo),從而求出異面直線所成角的余弦值;【詳解】解:如圖建立空間直角坐標(biāo)系,令正四面體的棱長(zhǎng)為,則,所以,所以,所以,,,,,設(shè),因?yàn)?,所以,所以,所以,,設(shè)直線與所成角為,則故答案為:14、5【解析】根據(jù)題意和等比數(shù)列的求和公式,求得,結(jié)合求和公式,即可求解.【詳解】因?yàn)?,若時(shí),可得,故,所以,化簡(jiǎn)得,整理得,解得或,因?yàn)?,解得,所?故答案為:.15、##0.5【解析】根據(jù)定義直接計(jì)算得到答案.【詳解】.故答案為:.16、①.##②.【解析】由得到,即可得到數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,從而求出,再根據(jù)求出,令,利用裂項(xiàng)相消法求出,即可求出的取值范圍,從而得解;【詳解】解:由,令,得,,解得;當(dāng)時(shí),,即因此,數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,,即所以,令,所以,所以,則最大整數(shù)為;故答案為:;;三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)聯(lián)立直線方程和雙曲線方程,利用弦長(zhǎng)公式可求弦長(zhǎng).(2)根據(jù)圓過(guò)原點(diǎn)可得,設(shè),從而,聯(lián)立直線方程和雙曲線方程后利用韋達(dá)定理化簡(jiǎn)前者可得所求的參數(shù)的值.【小問(wèn)1詳解】當(dāng)時(shí),直線,設(shè),由可得,此時(shí),故.【小問(wèn)2詳解】設(shè),因?yàn)橐詾橹睆降膱A經(jīng)過(guò)坐標(biāo)原點(diǎn),故,故,由可得,故且,故.而可化為即,因?yàn)?,所以,解得,結(jié)合其范圍可得.18、(1)(2)【解析】(1)由二項(xiàng)式系數(shù)和公式可得答案;(2)求出的通項(xiàng),利用的指數(shù)為整數(shù)可得答案.【小問(wèn)1詳解】的二項(xiàng)展開(kāi)式中所有項(xiàng)的二項(xiàng)式系數(shù)之和,所以.【小問(wèn)2詳解】,因此時(shí),有理項(xiàng),有理項(xiàng)是第一項(xiàng)和第七項(xiàng).19、(1),中位數(shù)為64;(2).【解析】(1)由頻率和為1求參數(shù)a,根據(jù)中位數(shù)的性質(zhì),結(jié)合頻率直方圖求中位數(shù).(2)首先由分層抽樣求6名同學(xué)的分布情況,再應(yīng)用列舉法求概率.【詳解】(1)由題設(shè),,可得,∴中位數(shù)應(yīng)在之間,令中位數(shù)為,則,解得.∴該校同學(xué)平均每天體育鍛煉時(shí)間的中位數(shù)為64.(2)由題設(shè),抽取6名同學(xué)中1名在,2名在,3名在,若1名在為,2名在為,3名在為,∴隨機(jī)抽取2名的可能情況有共15種,其中至少有一名在內(nèi)的共12種,∴這2名同學(xué)中至少有一名每天體育鍛煉時(shí)間(單位:分鐘)在內(nèi)的概率為.20、(1);(2);(3)【解析】(1)由橢圓方程即可求出離心率.(2)求出橢圓的焦點(diǎn)即為拋物線的焦點(diǎn),即可求出答案.(3)由拋物線定義可求出點(diǎn)的坐標(biāo)【小問(wèn)1詳解】由題意可知,.【小問(wèn)2詳解】橢圓的右焦點(diǎn)為,故拋物線的焦點(diǎn)為.拋物線的方程為.【小問(wèn)3詳解】設(shè)的坐標(biāo)為,,解得,.故的坐標(biāo)為.21、(1);(2).【
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版E管材國(guó)際環(huán)保認(rèn)證合同2篇
- 《科幻小說(shuō)賞析與寫(xiě)作》 課件 郭琦 第1-5章 導(dǎo)論科幻小說(shuō)賞析與寫(xiě)作的“關(guān)鍵詞”-“反烏托邦”的警示與預(yù)言-《一九八四》
- 電影票房未來(lái)發(fā)展趨勢(shì)報(bào)告
- 2024年浙江工貿(mào)職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 2024年河南經(jīng)貿(mào)職業(yè)學(xué)院高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- 2024年河南地礦職業(yè)學(xué)院高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- 二零二五年急救藥品生產(chǎn)許可證申請(qǐng)與審批合同3篇
- 2024年江陰職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 2024年江蘇海事職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 二零二五年度校園自來(lái)水管道改造合同2篇
- 舞蹈表演專(zhuān)業(yè)人才需求調(diào)研報(bào)告
- GB/T 9978.5-2008建筑構(gòu)件耐火試驗(yàn)方法第5部分:承重水平分隔構(gòu)件的特殊要求
- 上海紐約大學(xué)自主招生面試試題綜合素質(zhì)答案技巧
- 辦公家具項(xiàng)目實(shí)施方案、供貨方案
- 2022年物流服務(wù)師職業(yè)技能競(jìng)賽理論題庫(kù)(含答案)
- ?;钒踩僮饕?guī)程
- 連鎖遺傳和遺傳作圖
- DB63∕T 1885-2020 青海省城鎮(zhèn)老舊小區(qū)綜合改造技術(shù)規(guī)程
- 高邊坡施工危險(xiǎn)源辨識(shí)及分析
- 中海地產(chǎn)設(shè)計(jì)管理程序
- 簡(jiǎn)譜視唱15942
評(píng)論
0/150
提交評(píng)論