版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆上海市七寶高中高三數(shù)學(xué)第一學(xué)期期末檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術(shù)》“少廣”算法中有這樣一個數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分數(shù)進行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之數(shù),逐個照此同樣方法,直至全部為整數(shù),例如:及時,如圖:記為每個序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.17642.已知函數(shù)的圖像向右平移個單位長度后,得到的圖像關(guān)于軸對稱,,當取得最小值時,函數(shù)的解析式為()A. B.C. D.3.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.4.已知集合,則集合()A. B. C. D.5.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.56.明代數(shù)學(xué)家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.7.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數(shù)為()A.1 B.2 C.3 D.08.如圖,在△ABC中,點M是邊BC的中點,將△ABM沿著AM翻折成△AB'M,且點B'不在平面AMC內(nèi),點P是線段B'C上一點.若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過△AB'CA.重心 B.垂心 C.內(nèi)心 D.外心9.已知復(fù)數(shù)滿足,則的最大值為()A. B. C. D.610.關(guān)于函數(shù)有下述四個結(jié)論:()①是偶函數(shù);②在區(qū)間上是單調(diào)遞增函數(shù);③在上的最大值為2;④在區(qū)間上有4個零點.其中所有正確結(jié)論的編號是()A.①②④ B.①③ C.①④ D.②④11.已知函數(shù),若關(guān)于的方程恰好有3個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.12.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數(shù)為________________.14.已知橢圓與雙曲線(,)有相同的焦點,其左、右焦點分別為、,若橢圓與雙曲線在第一象限內(nèi)的交點為,且,則雙曲線的離心率為__________.15.某陶瓷廠準備燒制甲、乙、丙三件不同的工藝品,制作過程必須先后經(jīng)過兩次燒制,當?shù)谝淮螣坪细窈蠓娇蛇M入第二次燒制,再次燒制過程相互獨立.根據(jù)該廠現(xiàn)有的技術(shù)水平,經(jīng)過第一次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.5、0.6、0.4,經(jīng)過第二次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.6、0.5、0.75;則第一次燒制后恰有一件產(chǎn)品合格的概率為________;經(jīng)過前后兩次燒制后,合格工藝品的件數(shù)為,則隨機變量的期望為________.16.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.18.(12分)已知分別是內(nèi)角的對邊,滿足(1)求內(nèi)角的大?。?)已知,設(shè)點是外一點,且,求平面四邊形面積的最大值.19.(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點.(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.20.(12分)某省新課改后某校為預(yù)測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計圖.(1)根據(jù)條形統(tǒng)計圖,估計本屆高三學(xué)生本科上線率.(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設(shè)以(1)中的本科上線率作為甲市每個考生本科上線的概率.(i)若從甲市隨機抽取10名高三學(xué)生,求恰有8名學(xué)生達到本科線的概率(結(jié)果精確到0.01);(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設(shè)該市每個考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數(shù)據(jù):取,.21.(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.22.(10分)平面直角坐標系中,曲線:.直線經(jīng)過點,且傾斜角為,以為極點,軸正半軸為極軸,建立極坐標系.(1)寫出曲線的極坐標方程與直線的參數(shù)方程;(2)若直線與曲線相交于,兩點,且,求實數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)題目所給的步驟進行計算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點睛】本小題主要考查合情推理,考查中國古代數(shù)學(xué)文化,屬于基礎(chǔ)題.2、A【解析】
先求出平移后的函數(shù)解析式,結(jié)合圖像的對稱性和得到A和.【詳解】因為關(guān)于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時需注意x的系數(shù)和平移量之間的關(guān)系.3、A【解析】
由題先畫出基本圖形,結(jié)合向量加法和點乘運算化簡可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點睛】本題考查向量的線性運算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題4、D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎(chǔ)題.5、C【解析】
由,再運用三點共線時和最小,即可求解.【詳解】.故選:C【點睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關(guān)鍵,注意拋物線的性質(zhì)的靈活運用,屬于中檔題.6、C【解析】
根據(jù)程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環(huán),輸出結(jié)果為,由題意,得.故選:【點睛】本題考查了程序框圖的計算,意在考查學(xué)生的理解能力和計算能力.7、C【解析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數(shù).【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數(shù)為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎(chǔ)題.8、A【解析】
根據(jù)題意P到兩個平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點.故選:A.【點睛】本題考查了二面角,等體積法,意在考查學(xué)生的計算能力和空間想象能力.9、B【解析】
設(shè),,利用復(fù)數(shù)幾何意義計算.【詳解】設(shè),由已知,,所以點在單位圓上,而,表示點到的距離,故.故選:B.【點睛】本題考查求復(fù)數(shù)模的最大值,其實本題可以利用不等式來解決.10、C【解析】
根據(jù)函數(shù)的奇偶性、單調(diào)性、最值和零點對四個結(jié)論逐一分析,由此得出正確結(jié)論的編號.【詳解】的定義域為.由于,所以為偶函數(shù),故①正確.由于,,所以在區(qū)間上不是單調(diào)遞增函數(shù),所以②錯誤.當時,,且存在,使.所以當時,;由于為偶函數(shù),所以時,所以的最大值為,所以③錯誤.依題意,,當時,,所以令,解得,令,解得.所以在區(qū)間,有兩個零點.由于為偶函數(shù),所以在區(qū)間有兩個零點.故在區(qū)間上有4個零點.所以④正確.綜上所述,正確的結(jié)論序號為①④.故選:C【點睛】本小題主要考查三角函數(shù)的奇偶性、單調(diào)性、最值和零點,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.11、D【解析】
討論,,三種情況,求導(dǎo)得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當時,,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當時,;當時,,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的零點問題,意在考查學(xué)生的計算能力和應(yīng)用能力.12、B【解析】
雙曲線的漸近線方程為,由題可知.設(shè)點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
在二項展開式的通項中令的指數(shù)為,求出參數(shù)值,然后代入通項可得出結(jié)果.【詳解】的展開式的通項為,令,因此,的展開式中的系數(shù)為.故答案為:.【點睛】本題考查二項展開式中指定項系數(shù)的求解,涉及二項展開式通項的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.14、【解析】
先根據(jù)橢圓得出焦距,結(jié)合橢圓的定義求出,結(jié)合雙曲線的定義求出雙曲線的實半軸,最后利用離心率的公式求出離心率即可.【詳解】解:因為橢圓,則焦點為,又因為橢圓與雙曲線(,)有相同的焦點,橢圓與雙曲線在第一象限內(nèi)的交點為,且,在橢圓中:由橢圓的定義:在雙曲線中:,所以雙曲線的實軸長為:,實半軸為則雙曲線的離心率為:.故答案為:【點睛】本題主要考查橢圓與雙曲線的定義,考查離心率的求解,利用定義解決綜合問題.15、0.380.9【解析】
考慮恰有一件的三種情況直接計算得到概率,隨機變量的可能取值為,計算得到概率,再計算數(shù)學(xué)期望得到答案.【詳解】第一次燒制后恰有一件產(chǎn)品合格的概率為:.甲、乙、丙三件產(chǎn)品合格的概率分別為:,,.故隨機變量的可能取值為,故;;;.故.故答案為:0.38;0.9.【點睛】本題考查了概率的計算,數(shù)學(xué)期望,意在考查學(xué)生的計算能力和應(yīng)用能力.16、【解析】試題分析:根據(jù)題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點:古典概型概率三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據(jù)體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點M,連接ME,則.因為平面,平面,所以平面.(Ⅱ)因為平面ABC,所以點到平面ABC的距離等于點到平面ABC的距離.如圖,設(shè)O是AC的中點,連接,OB.因為為正三角形,所以,又平面平面,平面平面,所以平面ABC.所以點到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【點睛】本題考查證明線面平行,計算體積,意在考查推理證明,空間想象能力,計算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關(guān)鍵是證明線線平行,一般構(gòu)造平行四邊形,則對邊平行,或是構(gòu)造三角形中位線.18、(1)(2)【解析】
(1)首先利用誘導(dǎo)公式及兩角和的余弦公式得到,再由同角三角三角的基本關(guān)系得到,即可求出角;(2)由(1)知,是正三角形,設(shè),由余弦定理可得:,則,得到,再利用輔助角公式化簡,最后由正弦函數(shù)的性質(zhì)求得最大值;【詳解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,設(shè),由余弦定理得:,,,所以當時有最大值【點睛】本題考查同角三角函數(shù)的基本關(guān)系,三角恒等變換公式的應(yīng)用,三角形面積公式的應(yīng)用,以及正弦函數(shù)的性質(zhì),屬于中檔題.19、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由正方形的性質(zhì)得出,由平面得出,進而可推導(dǎo)出平面,再利用面面垂直的判定定理可證得結(jié)論;(Ⅱ)取的中點,連接、,以、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法能求出二面角的余弦值.【詳解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中點,連接、,是正方形,易知、、兩兩垂直,以點為坐標原點,以、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,在中,,,,、、、,設(shè)平面的一個法向量,,,由,得,令,則,,.設(shè)平面的一個法向量,,,由,得,取,得,,得.,二面角為鈍二面角,二面角的余弦值為.【點睛】本題考查面面垂直的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.20、(1)60%;(2)(i)0.12(ii)【解析】
(1)利用上線人數(shù)除以總?cè)藬?shù)求解;(2)(i)利用二項分布求解;(ii)甲、乙兩市上線人數(shù)分別記為X,Y,得,.,利用期望公式列不等式求解【詳解】(1)估計本科上線率為.(2)(i)記“恰有8名學(xué)生達到本科線”為事件A,由圖可知,甲市每個考生本科上線的概率為0.6,則.(ii)甲、乙兩市2020屆高考本科上線人數(shù)分別記為X,Y,依題意,可得,.因為2020屆高考本科上線人數(shù)乙
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025關(guān)于商店承包合同的樣本
- 鐵路貨運專用線建設(shè)合同三篇
- 培養(yǎng)創(chuàng)新人才的教研探索
- 2025合同無效的類型
- 2025前期物業(yè)服務(wù)合同(示范)
- 小學(xué)數(shù)學(xué)教育的市場潛力與開發(fā)
- 完善秋季教學(xué)設(shè)備與設(shè)施計劃
- 翻譯公司前臺服務(wù)總結(jié)
- 技術(shù)領(lǐng)域的創(chuàng)新團隊構(gòu)建案例分享
- 2025抵押物借款合同范本
- 2025年1月 浙江首考英語試卷
- 資本金管理制度文件模板
- 2025年急診科護理工作計劃
- 高中家長會 高二寒假線上家長會課件
- 2024-2025學(xué)年山東省聊城市高一上學(xué)期期末數(shù)學(xué)教學(xué)質(zhì)量檢測試題(附解析)
- 違規(guī)行為與處罰管理制度
- 個人教師述職報告錦集10篇
- 四川省等八省2025年普通高中學(xué)業(yè)水平選擇性考試適應(yīng)性演練歷史試題(含答案)
- 《內(nèi)部培訓(xùn)師培訓(xùn)》課件
- 《雷達原理》課件-3.3.3教學(xué)課件:相控陣雷達
- 紅色中國風(fēng)蛇年年會邀請函
評論
0/150
提交評論