版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
山東省濟南市長清第一中學(xué)大學(xué)科技園校區(qū)2025屆數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則的值為A. B.C. D.2.已知函數(shù)關(guān)于直線對稱,且當(dāng)時,恒成立,則滿足的x的取值范圍是()A. B.C. D.3.已知矩形,,,沿矩形的對角線將平面折起,若四點都在同一球面上,則該球面的面積為()A. B.C. D.4.已知定義在上的偶函數(shù),在上為減函數(shù),且,則不等式的解集是()A. B.C. D.5.已知平面直角坐標(biāo)系中,點,,,、、,,是線段AB的九等分點,則()A.45 B.50C.90 D.1006.下列函數(shù)中,在定義域內(nèi)既是單調(diào)函數(shù),又是奇函數(shù)的是()A. B.C. D.7.已知函數(shù),,則的零點所在的區(qū)間是A. B.C. D.8.設(shè)是兩個不同的平面,是直線且,,若使成立,則需增加條件()A.是直線且, B.是異面直線,C.是相交直線且, D.是平行直線且,9.平面α截球O的球面所得圓的半徑為1,球心O到平面α的距離為,則此球的體積為A.π B.πC.4π D.π10.函數(shù)的零點所在的區(qū)間為()A.(,1) B.(1,2)C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.請寫出一個最小正周期為,且在上單調(diào)遞增的函數(shù)__________12.潮汐是發(fā)生在沿海地區(qū)的一種自然現(xiàn)象,是指海水在天體(主要是月球和太陽)引潮力作用下所產(chǎn)生的周期性運動.習(xí)慣上把海面垂直方向漲落稱為潮汐,而海水在水平方向的流動稱為潮流.早先的人們?yōu)榱吮硎旧钡臅r刻,把發(fā)生在早晨的高潮叫潮,發(fā)生在晚上的高潮叫汐,這是潮汐名稱的由來.下表中給出了某市碼頭某一天水深與時間的關(guān)系(夜間零點開始計時).時刻(t)024681012水深(y)單位:米5.04.84.74.64.44.34.2時刻(t)141618202224水深(y)單位:米4.34.44.64.74.85.0用函數(shù)模型來近似地描述這些數(shù)據(jù),則________.13.已知對于任意x,y均有,且時,,則是_____(填奇或偶)函數(shù)14.函數(shù)的反函數(shù)是___________.15.定義在上的奇函數(shù)滿足:對于任意有,若,則的值為__________.16.已知,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)滿足,且.(1)求的解析式;(2)求在上的值域.18.在①是函數(shù)圖象的一條對稱軸,②函數(shù)的最大值為2,③函數(shù)圖象與y軸交點的縱坐標(biāo)是1這三個條件中選取兩個補充在下面題目中,并解答已知函數(shù),______(1)求的解析式;(2)求在上的值域19.證明:(1);(2)20.設(shè)函數(shù)且是定義域為的奇函數(shù),(1)若,求的取值范圍;(2)若在上的最小值為,求的值21.如圖,設(shè)α是任意角,α∈R,它的終邊OA與單位圓相交于點A,點(1)當(dāng)A在OB的反向延長線上時,求tanα;(2)當(dāng)OA⊥OB時,求sin2α.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用同角三角函數(shù)的基本關(guān)系把原式的分母“1”變?yōu)閟in2α+cos2α,然后給分子分母求除以cos2α,把原式化為關(guān)于tanα的關(guān)系式,把tanα的值代入即可求出值【詳解】因為tanα=3,所以故選C【點睛】本題是一道基礎(chǔ)題,考查學(xué)生靈活運用同角三角函數(shù)間的基本關(guān)系化簡求值的能力,做題的突破點是“1”的靈活變形2、B【解析】根據(jù)題意,得到函數(shù)為偶函數(shù),且在為單調(diào)遞減函數(shù),則在為單調(diào)遞增函數(shù),把不等式,轉(zhuǎn)化為,即可求解.【詳解】由題意,函數(shù)關(guān)于直線對稱,所以函數(shù)為偶函數(shù),又由當(dāng)時,恒成立,可得函數(shù)在為單調(diào)遞減函數(shù),則在為單調(diào)遞增函數(shù),因為,可得,即或,解得或,即不等式的解集為,即滿足的x的取值范圍是.故選:B.3、C【解析】矩形ABCD,AB=6,BC=8,矩形的對角線AC=10為該球的直徑,所以該球面的面積為.故選C.4、D【解析】根據(jù)函數(shù)的性質(zhì),畫出函數(shù)的圖象,數(shù)形結(jié)合求出解集【詳解】由題意,畫出的圖象如圖,等價于,或,由圖可知,不等式的解集為故選:D5、B【解析】利用向量的加法以及數(shù)乘運算可得,再由向量模的坐標(biāo)表示即可求解.【詳解】,∴故選:B.6、A【解析】根據(jù)解析式可直接判斷出單調(diào)性和奇偶性.【詳解】對于A:為奇函數(shù)且在上單調(diào)遞增,滿足題意;對于B:為非奇非偶函數(shù),不合題意;對于C:為非奇非偶函數(shù),不合題意;對于D:在整個定義域內(nèi)不具有單調(diào)性,不合題意.故選:A.7、C【解析】由題意結(jié)合零點存在定理確定的零點所在的區(qū)間即可.【詳解】由題意可知函數(shù)在上單調(diào)遞減,且函數(shù)為連續(xù)函數(shù),注意到,,,,結(jié)合函數(shù)零點存在定理可得的零點所在的區(qū)間是.本題選擇C選項.【點睛】應(yīng)用函數(shù)零點存在定理需要注意:一是嚴(yán)格把握零點存在性定理的條件;二是連續(xù)函數(shù)在一個區(qū)間的端點處函數(shù)值異號是這個函數(shù)在這個區(qū)間上存在零點的充分條件,而不是必要條件;三是函數(shù)f(x)在(a,b)上單調(diào)且f(a)f(b)<0,則f(x)在(a,b)上只有一個零點.8、C【解析】要使成立,需要其中一個面的兩條相交直線與另一個面平行,是相交直線且,,,,由平面和平面平行的判定定理可得.故選C.9、B【解析】球半徑,所以球的體積為,選B.10、D【解析】為定義域內(nèi)的單調(diào)遞增函數(shù),計算選項中各個變量的函數(shù)值,判斷在正負(fù),即可求出零點所在區(qū)間.【詳解】解:在上為單調(diào)遞增函數(shù),又,所以的零點所在的區(qū)間為.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、或(不唯一).【解析】根據(jù)函數(shù)最小正周期為,可構(gòu)造正弦型、余弦型或者正切型函數(shù),再結(jié)合在上單調(diào)遞增,構(gòu)造即可.【詳解】解:根據(jù)函數(shù)最小正周期為,可構(gòu)造正弦型、余弦型或者正切型函數(shù),再結(jié)合在上單調(diào)遞增,構(gòu)造即可,如或滿足題意故答案為:或(不唯一).12、##【解析】根據(jù)題意條件,結(jié)合表內(nèi)給的數(shù)據(jù),通過一天內(nèi)水深的最大值和最小值,即可列出關(guān)于、之間的關(guān)系,通過解方程解出、,即可求解出答案.【詳解】由表中某市碼頭某一天水深與時間的關(guān)系近似為函數(shù),從表中數(shù)據(jù)可知,函數(shù)的最大值為5.0,最小值為4.2,所以,解得,,故.故答案為:或?qū)懗?13、奇函數(shù)【解析】賦值,可求得,再賦值即可得到,利用奇偶性的定義可判斷奇偶性;【詳解】,令,得,,再令,得,是上的奇函數(shù);【點睛】本題考查了賦值法及奇函數(shù)的定義14、;【解析】根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)直接求解.【詳解】因為,所以,即的反函數(shù)為,故答案為:15、【解析】由可得,則可化簡,利用可得,由是在上的奇函數(shù)可得,由此【詳解】由題,因為,所以,由,則,則,因為,令,則,所以,因為是在上的奇函數(shù),所以,所以,故答案:0【點睛】本題考查函數(shù)奇偶性、周期性的應(yīng)用,考查由正切值求正、余弦值16、【解析】利用商數(shù)關(guān)系,由得到代入求解.【詳解】方法一:,則.方法二:分子分母同除,得.故答案為:【點睛】本題主要考查同角三角函數(shù)基本關(guān)系式的應(yīng)用,還考查了運算求解的能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用換元法令,求得的表達式,代入即可求得參數(shù),即可得的解析式;(2)根據(jù)函數(shù)單調(diào)性,即可求得在上的值域.【詳解】(1)令,則,則.因為,所以,解得.故的解析式為.(2)由(1)知,在上為增函數(shù).因為,,所以在上的值域為.【點睛】本題考查了換元法求二次函數(shù)的解析式,根據(jù)函數(shù)單調(diào)性求函數(shù)的值域,屬于基礎(chǔ)題.18、(1)條件選擇見解析,;(2).【解析】(1)選擇①②直接求出A及的解;選擇①③,先求出,再由求A作答;選擇②③,直接可得A,再由求作答.(2)由(1)結(jié)合正弦函數(shù)的性質(zhì)即可求得在上的值域.【小問1詳解】選擇①②,,由及得:,所以的解析式是:.選擇①③,由及得:,即,而,則,即,解得,所以的解析式是:.選擇②③,,而,即,又,則有,所以的解析式是:.【小問2詳解】由(1)知,,當(dāng)時,,則當(dāng),即時,,當(dāng),即時,,所以函數(shù)在上的值域是.19、(1)證明見解析(2)證明見解析【解析】(1)利用三角函數(shù)的和差公式,分別將兩邊化簡后即可;(2)利用和2倍角公式構(gòu)造出齊次式,再同時除以即可證明.【小問1詳解】左邊===右邊===左邊=右邊,所以原等式得證.【小問2詳解】故原式得證.20、(1);(2)2【解析】(1)由題意,得,由此可得,再代入解方程可得,由此可得函數(shù)在上為增函數(shù),再根據(jù)奇偶性與單調(diào)性即可解出不等式;(2)由(1)得,,令,由得,利用換元法轉(zhuǎn)化為二次函數(shù)的最值,再分類討論即可求出答案【詳解】解:(1)由題意,得,即,解得,由,得,即,解得,或(舍去),∴,∴函數(shù)在上為增函數(shù),由,得∴,解得,或,∴的取值范圍是;(2)由(1)得,,令,由得,,∴函數(shù)轉(zhuǎn)化為,對稱軸,①
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省獸用飼料購銷合同
- 技術(shù)研發(fā)合作協(xié)議書模板
- 總經(jīng)銷協(xié)議書范本
- 工業(yè)產(chǎn)品買賣合同經(jīng)典案例
- 天長市職業(yè)技術(shù)學(xué)校辦學(xué)合作協(xié)議
- 標(biāo)準(zhǔn)應(yīng)收賬款質(zhì)押借款合同示例
- 2024多人合伙協(xié)議范本
- 標(biāo)準(zhǔn)房屋轉(zhuǎn)租合同示范文本
- 房地產(chǎn)中介銷售合同模板
- 綠色金融擔(dān)保合同范例
- 北京市海淀區(qū)2024學(xué)年七年級上學(xué)期語文期中試卷【含參考答案】
- 2023-2024學(xué)年北京市東城區(qū)東直門中學(xué)七年級(上)期中數(shù)學(xué)試卷【含解析】
- 新制定《公平競爭審查條例》主題
- 小學(xué)體育課件《運動損傷的預(yù)防和處理》
- 個人招生計劃方案
- 2024年中煤集團西南分公司招聘筆試參考題庫附帶答案詳解
- 多囊卵巢綜合征的診斷和治療-課件
- 《漢服》PPT課件(完整版)
- 羊頭崗村拆遷安置住宅—3#樓工程試驗方案
- 三年級語文上冊期中考試完整版滬教版
- 施工機械應(yīng)用的不足與改進措施
評論
0/150
提交評論