2025屆四川省安岳縣周禮中學(xué) 高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第1頁
2025屆四川省安岳縣周禮中學(xué) 高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第2頁
2025屆四川省安岳縣周禮中學(xué) 高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第3頁
2025屆四川省安岳縣周禮中學(xué) 高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第4頁
2025屆四川省安岳縣周禮中學(xué) 高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆四川省安岳縣周禮中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一質(zhì)點的運動方程為(位移單位:m,時間單位:s),則該質(zhì)點在時的瞬時速度為()A.4 B.12C.15 D.212.已知點P(5,3,6),直線l過點A(2,3,1),且一個方向向量為,則點P到直線l的距離為()A. B.C. D.3.已知拋物線的焦點為,點為拋物線上一點,點,則的最小值為()A. B.2C. D.34.如圖為某幾何體的三視圖,則該幾何體中最大的側(cè)面積是()A.B.C.D.5.化學(xué)中,將構(gòu)成粒子(原子、離子或分子)在空間按一定規(guī)律呈周期性重復(fù)排列構(gòu)成的固體物質(zhì)稱為晶體.在結(jié)構(gòu)化學(xué)中,可將晶體結(jié)構(gòu)截分為一個個包含等同內(nèi)容的基本單位,這個基本單位叫做晶胞.已知鈣、鈦、氧可以形成如圖所示的立方體晶胞(其中Ti原子位于晶胞的中心,Ca原子均在頂點位置,O原子位于棱的中點).則圖中原子連線BF與所成角的余弦值為()A. B.C. D.6.如圖,正方形與矩形所在的平面互相垂直,在上,且平面,則M點的坐標為()A. B.C. D.7.若,則n的值為()A.7 B.8C.9 D.108.如圖所示,向量在一條直線上,且則()A. B.C. D.9.拋物線C:的焦點為F,P,R為C上位于F右側(cè)的兩點,若存在點Q使四邊形PFRQ為正方形,則()A. B.C. D.10.已知,則條件“”是條件“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件.11.意大利數(shù)學(xué)家斐波那契的《算經(jīng)》中記載了一個有趣的數(shù)列:1,1,2,3,5,8,13,21,34,55,89,144,……,這就是著名的斐波那契數(shù)列,該數(shù)列的前2022項中有()個奇數(shù)A.1012 B.1346C.1348 D.135012.函數(shù)在定義域上是增函數(shù),則實數(shù)m的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線在點處的切線方程是,則的值為______14.已知橢圓的焦點分別為,A為橢圓上一點,則________15.已知點在拋物線上,那么點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標為______16.已知雙曲線的左、右焦點分別為、,直線與的左、右支分別交于點、(、均在軸上方).若直線、的斜率均為,且四邊形的面積為,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,C是圓B:(B是圓心)上一動點,線段AC的垂直平分線交BC于點P(1)求動點P的軌跡的方程;(2)設(shè)E,F(xiàn)為與x軸的兩交點,Q是直線上動點,直線QE,QF分別交于M,N兩點,求證:直線MN過定點18.(12分)已知橢圓,其上頂點與左右焦點圍成的是面積為的正三角形.(1)求橢圓的方程;(2)過橢圓的右焦點的直線(的斜率存在)交橢圓于兩點,弦的垂直平分線交軸于點,問:是否是定值?若是,求出定值:若不是,說明理由.19.(12分)如圖,在三棱柱中,平面ABC,,,,點D,E分別在棱和棱上,且,,M為棱中點(1)求證:;(2)求直線AB與平面所成角的正弦值20.(12分)已知函數(shù),.(1)令,求函數(shù)的零點;(2)令,求函數(shù)的最小值.21.(12分)設(shè)數(shù)列的前項和為,已知,且.(1)證明:數(shù)列為等比數(shù)列;(2)若,是否存在正整數(shù),使得對任意恒成立?若存在、求的值;若不存在,說明理由.22.(10分)已知的展開式中二項式系數(shù)和為16(1)求展開式中二項式系數(shù)最大的項;(2)設(shè)展開式中的常數(shù)項為p,展開式中所有項系數(shù)的和為q,求

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由瞬時變化率的定義,代入公式求解計算.【詳解】由題意,該質(zhì)點在時的瞬時速度為.故選:B2、B【解析】根據(jù)向量和直線l的方向向量的關(guān)系即可求出點P到直線l的距離.【詳解】由題意,,,,,,到直線的距離為.故選:B.3、D【解析】求出拋物線C的準線l的方程,過A作l的垂線段,結(jié)合幾何意義及拋物線定義即可得解.【詳解】拋物線的準線l:,顯然點A在拋物線C內(nèi),過A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點P的點,過作于點N,連PF,AN,,由拋物線定義知,,于是得,即點P是過A作準線l的垂線與拋物線C的交點時,取最小值,所以的最小值為3.故選:D4、B【解析】由三視圖還原原幾何體,確定幾何體的結(jié)構(gòu),計算各面面積可得【詳解】由三視圖,原幾何體是三棱錐,平面,,尺寸見三視圖,,,故選:B5、C【解析】如圖所示,以為坐標原點,所在的直線分別為軸,建立直角坐標系,設(shè)立方體的棱長為,求出的值,即可得到答案;【詳解】如圖所示,以為坐標原點,所在的直線分別為軸,建立直角坐標系,設(shè)立方體的棱長為,則,,,,連線與所成角的余弦值為故選:C.6、A【解析】設(shè)點的坐標為,由平面,可得出,利用空間向量數(shù)量積為0求得、的值,即可得出點的坐標.【詳解】設(shè)點的坐標為,,,,,則,,,平面,即,所以,,解得,所以,點的坐標為,故選:A.7、D【解析】根據(jù)給定條件利用組合數(shù)的性質(zhì)計算作答【詳解】因為,則由組合數(shù)性質(zhì)有,即,所以n的值為10.故選:D8、D【解析】根據(jù)向量加法的三角形法則得到化簡得到故答案為D9、A【解析】不妨設(shè),不妨設(shè),則,利用拋物線的對稱性及正方形的性質(zhì)列出的方程求得后可得結(jié)論【詳解】如圖所示,設(shè),不妨設(shè),則,由拋物線的對稱性及正方形的性質(zhì)可得,解得(正數(shù)舍去),所以故選:A10、A【解析】若命題,則p是q的充分不必要條件,q是p的必要不充分條件【詳解】因為,所以,所以.故選:A11、C【解析】由斐波那契數(shù)列的前幾項分析該數(shù)列的項的奇偶規(guī)律,由此確定該數(shù)列的前2022項中的奇數(shù)的個數(shù).【詳解】由已知可得為奇數(shù),為奇數(shù),為偶數(shù),因為,所以為奇數(shù),為奇數(shù),為偶數(shù),…………所以為奇數(shù),為奇數(shù),為偶數(shù),又故該數(shù)列的前2022項中共有1348個奇數(shù),故選:C.12、A【解析】根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求出【詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A二、填空題:本題共4小題,每小題5分,共20分。13、11【解析】根據(jù)給定條件結(jié)合導(dǎo)數(shù)的幾何意義直接計算作答.【詳解】因曲線在點處的切線方程是,則,,所以.故答案為:1114、4【解析】直接利用橢圓的定義即可求解.【詳解】因為橢圓的焦點分別為,A為橢圓上一點,所以.故答案為:415、【解析】由拋物線定義可得,由此可知當(dāng)為與拋物線的交點時,取得最小值,進而求得點坐標.【詳解】由題意得:拋物線焦點為,準線為作,垂直于準線,如下圖所示:由拋物線定義知:(當(dāng)且僅當(dāng)三點共線時取等號)即的最小值為,此時為與拋物線的交點故答案為【點睛】本題考查拋物線線上的點到焦點的距離與到定點距離之和最小的相關(guān)問題的求解,關(guān)鍵是能夠熟練應(yīng)用拋物線定義確定最值取得的位置.16、【解析】設(shè)點關(guān)于原點的對稱點為點,連接,分析可知四邊形為平行四邊形,可得出,設(shè),可得出直線的方程為,設(shè)點、,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,求出的取值范圍,利用三角形的面積公式可求得的值,即可求得的值.【詳解】解:設(shè)點關(guān)于原點的對稱點為點,連接,如下圖所示:在雙曲線中,,,則,即點、,因為原點為、的中點,則四邊形為平行四邊形,所以,且,因為,故、、三點共線,所以,,故,由題意可知,,設(shè),則直線的方程為,設(shè)點、,聯(lián)立,可得,所以,,可得,由韋達定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)根據(jù),利用橢圓的定義求解;(2)(解法1)設(shè),得到,的方程,與橢圓方程聯(lián)立,求得M,N的坐標,寫出直線的方程求解;(解法2)上同解法1,由對稱性分析知動直線MN所過定點一定在x軸上,設(shè)所求定點為,由C,D,T三點共線,然后由求解;(解法3)設(shè),由,,設(shè):,:,其中,與橢圓方程聯(lián)立,整理得,由F,M,N三點的橫坐標為該方程的三個根,得到:求解.【小問1詳解】解:由題知,則,由橢圓的定義知動點P的軌跡為以A,B為焦點,6為長軸長的橢圓,所以軌跡的方程為【小問2詳解】(解法1)易知E,F(xiàn)為橢圓的長軸兩端點,不妨設(shè),,設(shè),則,,于是:,:,聯(lián)立得,解得或,易得,同理當(dāng),即時,:;當(dāng)時,有,于是:,即綜上直線MN過定點(解法2)上同解法1,得,,由對稱性分析知動直線MN所過定點一定在x軸上,設(shè)所求定點為,由C,D,T三點共線,得,即,于是,整理得,由t的任意性知,即,所以直線MN過定點(解法3)設(shè),則,,當(dāng)時,直線MN即為x軸;當(dāng)時,因為,所以,則,設(shè):,:,其中,聯(lián)立,得,整理得,易知F,M,N三點的橫坐標為該方程的三個根,所以:,由及的任意性,知直線MN過定點18、(1);(2)是定值,定值為4【解析】(1)根據(jù)正三角形性質(zhì)與面積可求得即可求得方程;(2)當(dāng)直線斜率不為0時,設(shè)其方程代入橢圓方程利用韋達定理求得兩根關(guān)系式,進而求得的表達式,最后求比值即可;當(dāng)直線斜率為0時直接求解即可【詳解】(1)為正三角形,,可得,且,∴橢圓的方程為.(2)分以下兩種情況討論:①當(dāng)直線斜率不為0時,設(shè)其方程為,且,聯(lián)立,消去得,則,且,∴弦的中點的坐標為,則弦的垂直平分線為,令,得,,又,;②當(dāng)直線斜率為0時,則,,則.綜合①②得是定值且為4【點睛】方法點睛:求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(guān)(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值19、(1)證明見解析;(2).【解析】(1)由線面垂直、等腰三角形的性質(zhì)易得、,再根據(jù)線面垂直的判定及性質(zhì)證明結(jié)論;(2)構(gòu)建空間直角坐標系,確定相關(guān)點坐標,進而求的方向向量、面的法向量,應(yīng)用空間向量夾角的坐標表示求直線與平面所成角的正弦值.【小問1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點,則,又,則平面,由平面,因此,.【小問2詳解】以為原點,以,,為軸、軸、軸的正方向建立空間直角坐標系,如圖所示,可得:,,,,,,.∴,,,,設(shè)為面的法向量,則,令得,設(shè)與平面所成角為,則,∴直線與平面所成角的正弦值為.20、(1)答案見解析(2)答案見解析【解析】(1)函數(shù)零點的個數(shù),就是方程的解的個數(shù),顯然是方程的一個解,再對a分類討論,即得函數(shù)的零點;(2)令,可得,得,再對二次函數(shù)的對稱軸分三種情況討論得解.【詳解】(1)由,可知函數(shù)零點的個數(shù),就是方程的解的個數(shù),顯然是方程的一個解;當(dāng)時,方程可化為,得,由函數(shù)單調(diào)遞增,且值域為,有下列幾種情況如下:①當(dāng)時,方程沒有根,可得函數(shù)只有一個零點;②當(dāng)時,方程的根為,可得函數(shù)只有一個零點;③當(dāng)且時,方程的根為,由,可得函數(shù)有兩個零點和;由上知,當(dāng)或時,函數(shù)的零點為;當(dāng)且時,數(shù)的零點為和.(2)令,可得,由,,可得,二次函數(shù)的對稱軸為,①當(dāng)時,即,此時函數(shù)的最小值為;②當(dāng)時,即,此時函數(shù)的最小值為;③當(dāng),即,此時函數(shù)最小值為.【點睛】本題主要考查函數(shù)的零點問題,考查指數(shù)對數(shù)函數(shù)的圖象,考查函數(shù)的最值問題,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.21、(1)證明見解析(2)【解析】(1)由已知條件有,根據(jù)等比數(shù)列的定義即可證明;(2)由(1)求出及,進而可得,利用二次函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論