2025屆湖北省宜昌市西陵區(qū)宜昌二中數(shù)學高一上期末經(jīng)典試題含解析_第1頁
2025屆湖北省宜昌市西陵區(qū)宜昌二中數(shù)學高一上期末經(jīng)典試題含解析_第2頁
2025屆湖北省宜昌市西陵區(qū)宜昌二中數(shù)學高一上期末經(jīng)典試題含解析_第3頁
2025屆湖北省宜昌市西陵區(qū)宜昌二中數(shù)學高一上期末經(jīng)典試題含解析_第4頁
2025屆湖北省宜昌市西陵區(qū)宜昌二中數(shù)學高一上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆湖北省宜昌市西陵區(qū)宜昌二中數(shù)學高一上期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.實數(shù)滿足,則下列關(guān)系正確的是A. B.C. D.2.冪函數(shù)y=xa,當a取不同的正數(shù)時,在區(qū)間[0,1]上它們的圖象是一組美麗的曲線(如圖),設(shè)點A(1,0),B(0,1),連接AB,線段AB恰好被其中的兩個冪函數(shù)y=xa,y=xb的圖象三等分,即有BM=MN=NA,那么=()A.0 B.1C. D.23.《九章算術(shù)》成書于公元一世紀,是中國古代乃至東方的第一部自成體系的數(shù)學專著.書中記載這樣一個問題“今有宛田,下周三十步,徑十六步.問為田幾何?”(一步=1.5米)意思是現(xiàn)有扇形田,弧長為45米,直徑為24米,那么扇形田的面積為A.135平方米 B.270平方米C.540平方米 D.1080平方米4.已知函數(shù)f(x)=有兩不同的零點,則的取值范圍是()A.(?∞,0) B.(0,+∞)C.(?1,0) D.(0,1)5.我國古代數(shù)學名著《九章算術(shù)》里有一道關(guān)于玉石的問題:“今有玉方一寸,重七兩;石方一寸,重六兩.今有石方三寸,中有玉,并重十一斤(兩).問玉、石重各幾何?”如圖所示的程序框圖反映了對此題的一個求解算法,運行該程序框圖,則輸出的,分別為()A., B.,C., D.,6.等于A. B.C. D.7.已知一組數(shù)據(jù)為20,30,40,50,50,50,70,80,其平均數(shù)、第60百分位數(shù)和眾數(shù)的大小關(guān)系是()A.平均數(shù)=第60百分位數(shù)>眾數(shù) B.平均數(shù)<第60百分位數(shù)=眾數(shù)C.第60百分位數(shù)=眾數(shù)<平均數(shù) D.平均數(shù)=第60百分位數(shù)=眾數(shù)8.已知函數(shù)在[2,3]上單調(diào)遞減,則實數(shù)a的取值范圍是()A. B.C. D.9.已知函數(shù)的圖像過點和,則在定義域上是A.奇函數(shù) B.偶函數(shù)C.減函數(shù) D.增函數(shù)10.設(shè)則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)函數(shù),則____________.12.已知,則滿足條件的角的集合為_________.13.水葫蘆又名鳳眼蓮,是一種原產(chǎn)于南美洲亞馬遜河流域?qū)儆谟昃没?,鳳眼藍屬的一種漂浮性水生植物,繁殖極快,廣泛分布于世界各地,被列入世界百大外來入侵種之一.某池塘中野生水葫蘆的面積與時間的函數(shù)關(guān)系圖象如圖所示.假設(shè)其函數(shù)關(guān)系為指數(shù)函數(shù),并給出下列說法:①此指數(shù)函數(shù)的底數(shù)為2;②在第5個月時,野生水葫蘆的面積就會超過30m2;③野生水葫蘆從4m2蔓延到12m2只需1.5個月;④設(shè)野生水葫蘆蔓延至2m2、3m2、6m2所需的時間分別為t1、t2、t3,則有t1+t2=t3;⑤野生水葫蘆在第1到第3個月之間蔓延的平均速度等于在第2到第4個月之間蔓延的平均速度.其中,正確的是________.(填序號).14.已知函數(shù)圖像關(guān)于對稱,當時,恒成立,則滿足的取值范圍是_____________15.已知直線,直線若,則______________16.記為偶函數(shù),是正整數(shù),,對任意實數(shù),滿足中的元素不超過兩個,且存在實數(shù)使中含有兩個元素,則的值是__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟效益好的特點,研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當不超過4尾/立方米時,的值為2千克/年:當時,是的一次函數(shù),當達到20尾/立方米時,因缺氧等原因,的值為0千克/年.(1)當時,求關(guān)于的函數(shù)解析式;(2)當養(yǎng)殖密度為多大時,魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.18.設(shè)a>0,且a≠1,解關(guān)于x的不等式19.一家貨物公司計劃在距離車站不超過8千米的范圍內(nèi)征地建造倉庫,經(jīng)過市場調(diào)查了解到下列信息:征地費用(單位:萬元)與倉庫到車站的距離(單位:千米)的關(guān)系為.為了交通方便,倉庫與車站之間還要修一條道路,修路費用(單位:萬元)與倉庫到車站的距離(單位:千米)成正比.若倉庫到車站的距離為3千米時,修路費用為18萬元.設(shè)為征地與修路兩項費用之和.(1)求的解析式;(2)倉庫應建在離車站多遠處,可使總費用最小,并求最小值20.已知關(guān)于一元二次不等式的解集為.(1)求函數(shù)的最小值;(2)求關(guān)于的一元二次不等式的解集.21.解下列不等式:(1);(2).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)指數(shù)和對數(shù)的運算公式得到【詳解】=故A正確.故B不正確;故C,D不正確.故答案為A.【點睛】這個題目考查了指數(shù)和對數(shù)的公式的互化,以及換底公式的應用,較為簡單.2、A【解析】由題意得,代入函數(shù)解析式,進而利用指對互化即可得解.【詳解】BM=MN=NA,點A(1,0),B(0,1),所以,將兩點坐標分別代入y=xa,y=xb,得所以,所以.故選:A.【點睛】本題主要考查了冪函數(shù)的圖像及對數(shù)的運算,涉及換底公式,屬于基礎(chǔ)題.3、B【解析】直接利用扇形面積計算得到答案.【詳解】根據(jù)扇形的面積公式,計算扇形田的面積為Slr45270(平方米).故選:B.【點睛】本題考查了扇形面積,屬于簡單題.4、A【解析】函數(shù)f(x)=有兩不同的零點,可以轉(zhuǎn)化為直線與函數(shù)的圖象有兩個不同的交點,構(gòu)造不等式即可求得的取值范圍.【詳解】由題可知方程有兩個不同的實數(shù)根,則直線與函數(shù)的圖象有兩個不同的交點,作出與的大致圖象如下:不妨設(shè),由圖可知,,整理得,由基本不等式得,(當且僅當時等號成立)又,所以,解得,故選:A5、C【解析】執(zhí)行程序框圖,;;;,結(jié)束循環(huán),輸出的分別為,故選C.【方法點睛】本題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.6、A【解析】分析:由條件利用誘導公式、兩角和差的余弦公式化簡所給的式子,可得結(jié)果.詳解:.故選:A.點睛:本題主要考查誘導公式、兩角和差的余弦公式的應用,屬于基礎(chǔ)題.7、B【解析】從數(shù)據(jù)為20,30,40,50,50,50,70,80中計算出平均數(shù)、第60百分位數(shù)和眾數(shù),進行比較即可.【詳解】解:平均數(shù)為,,第5個數(shù)50即為第60百分位數(shù).又眾數(shù)為50,它們的大小關(guān)系是平均數(shù)第60百分位數(shù)眾數(shù).故選:B.8、C【解析】根據(jù)復合函數(shù)的單調(diào)性法則“同增異減”求解即可.【詳解】由于函數(shù)在上單調(diào)遞減,在定義域內(nèi)是增函數(shù),所以根據(jù)復合函數(shù)的單調(diào)性法則“同增異減”得:在上單調(diào)遞減,且,所以且,解得:.故的取值范圍是故選:C.9、D【解析】∵f(x)的圖象過點(4,0)和(7,1),∴∴f(x)=log4(x-3).∴f(x)是增函數(shù).∵f(x)的定義域是(3,+∞),不關(guān)于原點對稱.∴f(x)為非奇非偶函數(shù)故選D10、D【解析】由指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,并與0,1比較可得答案【詳解】由指數(shù)、對數(shù)函數(shù)的性質(zhì)可知:,,所以有.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】依據(jù)分段函數(shù)定義去求的值即可.【詳解】由,可得,則由,可得故答案為:12、【解析】根據(jù)特殊角的三角函數(shù)值與正弦函數(shù)的性質(zhì)計算可得;【詳解】解:因為,所以或,解得或,因為,所以或,即;故答案為:13、①②④【解析】設(shè)且,根據(jù)圖像求出,結(jié)合計算進而可判斷①②③④;根據(jù)第1到第3個月、第2到第4個月的面積即可求出對應的平均速度,進而判斷⑤.【詳解】因為其關(guān)系為指數(shù)函數(shù),所以可設(shè)且,又圖像過點,所以.所以指數(shù)函數(shù)的底數(shù)為2,故①正確;當時,,故②正確;當y=4時,;當y=12時,;所以,故③錯誤;因為,所以,故④正確;第1到第3個月之間的平均速度為:,第2到第4個月之間的平均速度為:,,故⑤錯誤.故答案為:①②④14、【解析】由函數(shù)圖像關(guān)于對稱,可得函數(shù)是偶函數(shù),由當時,恒成立,可得函數(shù)在上為增函數(shù),從而將轉(zhuǎn)化為,進而可求出取值范圍【詳解】因為函數(shù)圖像關(guān)于對稱,所以函數(shù)是偶函數(shù),所以可轉(zhuǎn)化為因為當時,恒成立,所以函數(shù)在上為增函數(shù),所以,解得,所以取值范圍為,故答案為:15、【解析】由兩條直線垂直,可得,解方程即可求解.詳解】若,則,解得,故答案為:【點睛】本題考查了由兩條直線互相垂直,求參數(shù)的范圍,熟練掌握直線垂直的充要條件是解題的關(guān)鍵,考查了運算能力,屬于基礎(chǔ)題.16、4、5、6【解析】根據(jù)偶函數(shù),是正整數(shù),推斷出的取值范圍,相鄰的兩個的距離是,依照題意列不等式組,求出的值【詳解】由題意得.∵為偶函數(shù),是正整數(shù),∴,∵對任意實數(shù),滿足中的元素不超過兩個,且存在實數(shù)使中含有兩個元素,∴中任意相鄰兩個元素的間隔必小于1,任意相鄰的三個元素的間隔之和必大于1∴,解得,又,∴.答案:【點睛】本題考查了正弦函數(shù)的奇偶性和周期性,以及根據(jù)集合的運算關(guān)系,求參數(shù)的值,關(guān)鍵是理解的意義,強調(diào)抽象思維與靈活應變的能力三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)當養(yǎng)殖密度為10尾/立方米時,魚的年生長量可以達到最大為千克/立方米.【解析】(1)由題意:當時,.當時,設(shè),在,是減函數(shù),由已知得,能求出函數(shù)(2)依題意并由(1),,根據(jù)分段函數(shù)的性質(zhì)求出各段的最大值,再取兩者中較大的即可,由此能求出結(jié)果【詳解】解:(1)由題意:當時,當時,設(shè),顯然在,減函數(shù),由已知得,解得,,故函數(shù)(2)依題意并由(1)得,當時,為增函數(shù),且當時,,所以,當時,的最大值為12.5當養(yǎng)殖密度為10尾立方米時,魚年生長量可以達到最大,最大值約為12.5千克立方米【點睛】(1)很多實際問題中,變量間關(guān)系不能用一個關(guān)系式給出,這時就需要構(gòu)建分段函數(shù)模型.(2)求函數(shù)最值常利用基本不等式法、導數(shù)法、函數(shù)的單調(diào)性等方法.在求分段函數(shù)的最值時,應先求每一段上的最值,然后比較得最大值、最小值18、當時,不等式的解集為;當時,不等式的解集為【解析】對進行分類討論,結(jié)合指數(shù)函數(shù)的單調(diào)性求得不等式的解集.【詳解】當時,在上遞減,所以,即,解得,即不等式的解集為.當時,在上遞增,所以,即,解得或,即不等式的解集為.19、(1),;(2)當倉庫建在離車站5千米時,總費用最少,最小值為70萬元.【解析】(1)先設(shè),依題意求參數(shù),即得的解析式;(2)先整理函數(shù),再利用基本不等式求最值,即得函數(shù)最小值及取最小值的條件.【詳解】解:(1)根據(jù)題意,設(shè)修路費用,,解得,.,;(2)=,當且僅當即時取等號.當倉庫建在離車站5千米時,總費用最少,最小值為70萬元.20、(1)(2)【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論