遼寧省本溪市第二中學(xué)2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第1頁
遼寧省本溪市第二中學(xué)2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第2頁
遼寧省本溪市第二中學(xué)2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第3頁
遼寧省本溪市第二中學(xué)2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第4頁
遼寧省本溪市第二中學(xué)2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

遼寧省本溪市第二中學(xué)2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的離心率為,焦點到漸近線的距離為,則雙曲線的焦距等于A. B.C. D.2.給出下列四個說法,其中正確的是A.命題“若,則”的否命題是“若,則”B.“”是“雙曲線的離心率大于”的充要條件C.命題“,”的否定是“,”D.命題“在中,若,則是銳角三角形”的逆否命題是假命題3.圓與圓的位置關(guān)系是()A.內(nèi)含 B.相交C.外切 D.外離4.已知為等差數(shù)列,為公差,若成等比數(shù)列,且,則數(shù)列的前項和為()A. B.C. D.5.已知雙曲線的左、右焦點分別為,,過點作直線交雙曲線的右支于A,B兩點.若,則雙曲線的離心率為()A. B.C. D.6.下列命題中正確的是()A.函數(shù)最小值為2.B.函數(shù)的最小值為2.C.函數(shù)的最小值為D.函數(shù)的最大值為7.已知是拋物線上的一點,是拋物線的焦點,若以為始邊,為終邊的角,則等于()A. B.C. D.8.已知直線:與雙曲線的兩條漸近線分別相交于A、B兩點,若C為直線與y軸的交點,且,則k等于()A.4 B.6C. D.9.已知函數(shù),則滿足不等式的的取值范圍是()A. B.C. D.10.設(shè)圓上的動點到直線的距離為,則的取值范圍是()A. B.C. D.11.已知實數(shù),滿足則的最大值為()A.-1 B.0C.1 D.212.如圖,某圓錐的軸截面是等邊三角形,點是底面圓周上的一點,且,點是的中點,則異面直線與所成角的余弦值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某地區(qū)有3個疫苗接種定點醫(yī)院,現(xiàn)有10名志愿者將被派往這3個醫(yī)院協(xié)助新冠疫苗接種工作,每個醫(yī)院至少需要2名至多需要4名志愿者,則不同的安排方法共有___________種.14.從正方體的8個頂點中選取4個作為項點,可得到四面體的概率為________15.已知函數(shù)若存在,使得成立,則實數(shù)的取值范圍是_______________16.已知函數(shù),則不等式的解集為____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)經(jīng)過點,;(2)長軸長是短軸長的3倍,且經(jīng)過點18.(12分)已知圓:和圓外一點,過點作圓的切線,切線長為.(1)求圓的標(biāo)準(zhǔn)方程;(2)若圓:,求證:圓和圓相交,并求出兩圓的公共弦長.19.(12分)如圖,幾何體是圓柱的一部分,它是由矩形(及其內(nèi)部)以邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的封閉圖形.(1)設(shè),,求這個幾何體的表面積;(2)設(shè)G是弧DF的中點,設(shè)P是弧CE上的一點,且.求異面直線AG與BP所成角的大小.20.(12分)已知拋物線E:過點Q(1,2),F(xiàn)為其焦點,過F且不垂直于x軸的直線l交拋物線E于A,B兩點,動點P滿足△PAB的垂心為原點O.(1)求拋物線E的方程;(2)求證:動點P在定直線m上,并求的最小值.21.(12分)在平面直角坐標(biāo)系xOy中,已知拋物線()的焦點F到雙曲線的漸近線的距離為1.(1)求拋物線C的方程;(2)若不經(jīng)過原點O的直線l與拋物線C交于A、B兩點,且,求證:直線l過定點.22.(10分)已知關(guān)于的不等式(1)若不等式的解集為,求的值(2)若不等式的解集為,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】不妨設(shè)雙曲線方程為,則,即設(shè)焦點為,漸近線方程為則又解得.則焦距為.選:D2、D【解析】A選項:否命題應(yīng)該對條件結(jié)論同時否定,說法不正確;B選項:雙曲線的離心率大于,解得,所以說法不正確;C選項:否定應(yīng)該是:,,所以說法不正確;D選項:“在中,若,則是銳角三角形”是假命題,所以其逆否命題也為假命題,所以說法正確.【詳解】命題“若,則”的否命題是“若,則”,所以A選項不正確;雙曲線的離心率大于,即,解得,則“”是“雙曲線的離心率大于”的充分不必要條件,所以B選項不正確;命題“,”的否定是“,”,所以C選項不正確;命題“在中,若,則是銳角三角形”,在中,若,可能,此時三角形不是銳角三角形,所以這是一個假命題,所以其逆否命題也是假命題,所以該選項說法正確.故選:D【點睛】此題考查四個命題關(guān)系,充分條件與必要條件,含有一個量詞的命題的否定,關(guān)鍵在于弄清邏輯關(guān)系,正確求解.3、C【解析】分別求出兩圓的圓心、半徑,再求出兩圓的圓心距即可判斷作答.【詳解】圓的圓心,半徑,圓,即的圓心,半徑,則,即有,所以圓與圓外切.故選:C4、C【解析】先利用已知條件得到,解出公差,得到通項公式,再代入數(shù)列,利用裂項相消法求和即可.【詳解】因為成等比數(shù)列,,故,即,故,解得或(舍去),故,即,故的前項和為:.故選:C.【點睛】方法點睛:數(shù)列求和的方法:(1)倒序相加法:如果一個數(shù)列的前項中首末兩端等距離的兩項的和相等或等于同一個常數(shù),那么求這個數(shù)列的前項和即可以用倒序相加法(2)錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應(yīng)項之積構(gòu)成的,那么這個數(shù)列的前項和即可以用錯位相減法來求;(3)裂項相消法:把數(shù)列的通項拆成兩項之差,在求和時,中間的一些像可相互抵消,從而求得其和;(4)分組轉(zhuǎn)化法:一個數(shù)列的通項公式是由若干個等差數(shù)列或等比數(shù)列:或可求和的數(shù)列組成,則求和時可用分組轉(zhuǎn)換法分別求和再相加減;(5)并項求和法:一個數(shù)列的前項和可以兩兩結(jié)合求解,則稱之為并項求和,形如類型,可采用兩項合并求解.5、A【解析】根據(jù)給定條件結(jié)合雙曲線定義求出,,再借助余弦定理求出半焦距c即可計算作答.【詳解】因,令,,而雙曲線實半軸長,由雙曲線定義知,,而,于是可得,在等腰中,,令雙曲線半焦距為c,在中,由余弦定理得:,而,,,解得,所以雙曲線的離心率為.故選:A【點睛】方法點睛:求雙曲線的離心率的方法:(1)定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;(2)齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;(3)特殊值法:通過取特殊值或特殊位置,求出離心率.6、D【解析】根據(jù)基本不等式知識對選項逐一判斷【詳解】對于A,時為負(fù)值,故A錯誤對于B,,而無解,無法取等,故B錯誤對于,當(dāng)且僅當(dāng)即時等號成立,故,D正確,C錯誤故選:D7、D【解析】設(shè)點,取,可得,求出的值,利用拋物線的定義可求得的值.【詳解】設(shè)點,其中,則,,取,則,可得,因為,可得,解得,則,因此,.故選:D.8、D【解析】先求出雙曲線的漸近線方程,然后分別與直線聯(lián)立,求出A、B兩點的橫坐標(biāo),再利用可求解.【詳解】由雙曲線方程可知其漸近線方程為:,當(dāng)時,與聯(lián)立,得,同理得,由,且可知,所以有,解得.故選:D9、A【解析】利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,根據(jù)單調(diào)性即可解不等式【詳解】由則函數(shù)在上單調(diào)遞增又,所以,解得故選:A10、C【解析】求出圓心到直線距離,再借助圓的性質(zhì)求出d的最大值與最小值即可.【詳解】圓的方程化為,圓心為,半徑為1,則圓心到直線的距離,即直線和圓相離,因此,圓上的動點到直線的距離,有,,即,即的取值范圍是:.故選:C11、D【解析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù),即可得到結(jié)果【詳解】由約束條件畫出可行域如圖,化目標(biāo)函數(shù)為,由圖可知當(dāng)直線過點時,直線在軸上的截距最小,取得最大值2.故選:D12、C【解析】建立空間直角坐標(biāo)系,分別得到,然后根據(jù)空間向量夾角公式計算即可.【詳解】以過點且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則根據(jù)題意可得,,,,所以,,設(shè)異面直線與所成角為,則.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、22050【解析】先分組,再排列,注意部分平均分組問題,需要除以平均組數(shù)的全排列.【詳解】根據(jù)題意,這10名志愿者的安排方法共有兩類:第一類是2,4,4,第二類是3,3,4.故不同的安排方法共有種.故答案為:2205014、【解析】計算出正方體的8個頂點中選取4個作為項點的取法和分從上底面取一個點下底面取三個點、從上底面取二個點下底面取二個點、從上底面取三個點下底面取一個點可得到四面體的取法,由古典概型概率計算公式可得答案.【詳解】正方體的8個頂點中選取4個作為項點,共有取法,可得到四面體的情況有從上底面取一個點下底面取三個點有種;從上底面取二個點下底面取二個點有種,其中當(dāng)上底面和下底面取的四個點在同一平面時共有10種情況不符合,此種情況共有種;從上底面取三個點下底面取一個點有種;一個有種,所以可得到四面體的概率為.故答案為:.15、【解析】分離參數(shù)法得到能成立,構(gòu)造函數(shù),求出的最小值,即可求出實數(shù)a的取值范圍.【詳解】由得.設(shè),則存在,使得成立,即能成立,所以能成立,所以.又令,由對勾函數(shù)的性質(zhì)可得:在上,t(x)單調(diào)遞增,所以當(dāng)x=2時,t有最小值,所以實數(shù)a的取值范圍是.故答案為:【點睛】導(dǎo)數(shù)的應(yīng)用主要有:(1)利用導(dǎo)函數(shù)幾何意義求切線方程;(2)利用導(dǎo)數(shù)研究原函數(shù)的單調(diào)性,求極值(最值);(3)利用導(dǎo)數(shù)求參數(shù)的取值范圍.16、【解析】易得函數(shù)為奇函數(shù),則不等式即為不等式,利用導(dǎo)數(shù)判斷函數(shù)得單調(diào)性,再根據(jù)函數(shù)得單調(diào)性解不等式即可.【詳解】解:函數(shù)得定義域為R,因為,所以函數(shù)為奇函數(shù),則不等式即為不等式,,所以函數(shù)在R上是增函數(shù),所以,解得,即不等式的解集為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)由已知可得,,且焦點在軸上,進而可得橢圓的標(biāo)準(zhǔn)方程;(2)由已知可得,,此時焦點在軸上,或,,此時焦點在軸上,進而可得橢圓的標(biāo)準(zhǔn)方程;【小問1詳解】解:橢圓經(jīng)過點,,,,,且焦點在軸上,橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:長軸長是短軸長的3倍,且經(jīng)過點,當(dāng)點在長軸上時,,,此時焦點在軸上,此時橢圓的標(biāo)準(zhǔn)方程為;當(dāng)點在短軸上時,,,此時焦點在軸上,此時橢圓的標(biāo)準(zhǔn)方程.綜合得橢圓的方程為或.18、(1)(2)證明見解析,公共弦長為【解析】(1)根據(jù)切線長公式計算即可得到,然后代入可得圓的方程.(2)聯(lián)立兩圓的方程作差可得直線的方程為,然后利用圓的弦長公式計算即可.【小問1詳解】圓的標(biāo)準(zhǔn)方程為,所以圓心為,半徑.由勾股定理可得,解得.所以圓的標(biāo)準(zhǔn)方程為.【小問2詳解】由題意得圓的圓心,半徑,圓的圓心,半徑,因為,,所以圓和圓相交.設(shè)兩圓相交于,兩點,則兩圓的方程相減得直線的方程為,圓心到直線的距離.所以,所以兩圓的公共弦長為.19、(1)(2)【解析】(1)將幾何體的表面積分成上下兩個扇形、兩個矩形和一個圓柱形側(cè)面的一部分組成,分別求出后相加即可;(2)先根據(jù)條件得到面,通過平移將異面直線轉(zhuǎn)化為同一個平面內(nèi)的直線夾角即可【小問1詳解】上下兩個扇形的面積之和為:兩個矩形面積之和為:4側(cè)面圓弧段的面積為:故這個幾何體的表面積為:【小問2詳解】如下圖,將直線平移到下底面上為由,且,,可得:面則而G是弧DF的中點,則由于上下兩個平面平行且全等,則直線與直線的夾角等于直線與直線的夾角,即為所求,則則直線與直線的夾角為20、(1);(2)證明見解析,的最小值為.【解析】(1)將點的坐標(biāo)代入拋物線方程,由此求得的值,進而求得拋物線的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程與拋物線的方程,寫出韋達定理,設(shè)出直線的方程,聯(lián)立直線的方程求得的坐標(biāo),由此判斷出動點在定直線上.求得的表達式,利用基本不等式求得其最小值.【詳解】(1)將點坐標(biāo)代入拋物線方程得,所以.(2)由(1)知拋物線的方程為,所以,設(shè)直線的方程為,設(shè),由消去得,所以.由于為三角形的垂心,所以,所以直線的方程為,即.同理可求得直線的方程為.由,結(jié)合,解得,所以在定直線上.直線的方程為,到直線的距離為,到直線的距離為.所以,當(dāng)且僅當(dāng)時取等號.所以的最小值為.【點睛】本小題主要考查拋物線方程的求法,考查直線和拋物線的位置關(guān)系,考查拋物線中三角形面積的有關(guān)計算,屬于中檔題.21、(1)(2)證明見解析【解析】(1)求出雙曲線的漸近線方程,由點到直線距離公式可得參數(shù)值得拋物線方程;(2)設(shè)直線方程為,,直線方程代入拋物線方程后應(yīng)用韋達定理得,代入可得值,得定點坐標(biāo)【小問1詳解】已知雙曲線的一條漸近線方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論