2025屆名校學(xué)術(shù)聯(lián)盟高三數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第1頁(yè)
2025屆名校學(xué)術(shù)聯(lián)盟高三數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第2頁(yè)
2025屆名校學(xué)術(shù)聯(lián)盟高三數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第3頁(yè)
2025屆名校學(xué)術(shù)聯(lián)盟高三數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第4頁(yè)
2025屆名校學(xué)術(shù)聯(lián)盟高三數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆名校學(xué)術(shù)聯(lián)盟高三數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.2.已知為圓的一條直徑,點(diǎn)的坐標(biāo)滿(mǎn)足不等式組則的取值范圍為()A. B.C. D.3.已知某口袋中有3個(gè)白球和個(gè)黑球(),現(xiàn)從中隨機(jī)取出一球,再換回一個(gè)不同顏色的球(即若取出的是白球,則放回一個(gè)黑球;若取出的是黑球,則放回一個(gè)白球),記換好球后袋中白球的個(gè)數(shù)是.若,則=()A. B.1 C. D.24.中,,為的中點(diǎn),,,則()A. B. C. D.25.如圖,矩形ABCD中,,,E是AD的中點(diǎn),將沿BE折起至,記二面角的平面角為,直線(xiàn)與平面BCDE所成的角為,與BC所成的角為,有如下兩個(gè)命題:①對(duì)滿(mǎn)足題意的任意的的位置,;②對(duì)滿(mǎn)足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立6.函數(shù)(其中是自然對(duì)數(shù)的底數(shù))的大致圖像為()A. B. C. D.7.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的結(jié)果為()A. B.6 C. D.8.已知雙曲線(xiàn):的焦距為,焦點(diǎn)到雙曲線(xiàn)的漸近線(xiàn)的距離為,則雙曲線(xiàn)的漸近線(xiàn)方程為()A. B. C. D.9.已知全集為,集合,則()A. B. C. D.10.若復(fù)數(shù)滿(mǎn)足,則的虛部為()A.5 B. C. D.-511.定義域?yàn)镽的偶函數(shù)滿(mǎn)足任意,有,且當(dāng)時(shí),.若函數(shù)至少有三個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.12.若函數(shù)在處取得極值2,則()A.-3 B.3 C.-2 D.2二、填空題:本題共4小題,每小題5分,共20分。13.在四面體中,分別是的中點(diǎn).則下述結(jié)論:①四面體的體積為;②異面直線(xiàn)所成角的正弦值為;③四面體外接球的表面積為;④若用一個(gè)與直線(xiàn)垂直,且與四面體的每個(gè)面都相交的平面去截該四面體,由此得到一個(gè)多邊形截面,則該多邊形截面面積最大值為.其中正確的有_____.(填寫(xiě)所有正確結(jié)論的編號(hào))14.(5分)已知橢圓方程為,過(guò)其下焦點(diǎn)作斜率存在的直線(xiàn)與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),則面積的取值范圍是____________.15.在中,角,,的對(duì)邊分別是,,,若,,則的面積的最大值為_(kāi)_____.16.《易經(jīng)》是中國(guó)傳統(tǒng)文化中的精髓,如圖是易經(jīng)八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線(xiàn)組成(""表示一根陽(yáng)線(xiàn),""表示一根陰線(xiàn)),從八卦中任取兩卦,這兩卦的六根線(xiàn)中恰有兩根陽(yáng)線(xiàn),四根陰線(xiàn)的概率為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知分別是的內(nèi)角的對(duì)邊,且.(Ⅰ)求.(Ⅱ)若,,求的面積.(Ⅲ)在(Ⅱ)的條件下,求的值.18.(12分)已知函數(shù),(1)證明:在區(qū)間單調(diào)遞減;(2)證明:對(duì)任意的有.19.(12分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知,.求C;若,求,的面積20.(12分)在中,,,.求邊上的高.①,②,③,這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問(wèn)題中并作答.21.(12分)如圖1,四邊形為直角梯形,,,,,,為線(xiàn)段上一點(diǎn),滿(mǎn)足,為的中點(diǎn),現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線(xiàn)段上找到一點(diǎn)(端點(diǎn)除外)使得直線(xiàn)與平面所成角的正弦值為?若存在,試確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.22.(10分)已知的內(nèi)角,,的對(duì)邊分別為,,,且.(1)求;(2)若的面積為,,求的周長(zhǎng).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)等比數(shù)列的性質(zhì)可得,通分化簡(jiǎn)即可.【詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【點(diǎn)睛】本題考查了等比數(shù)列的性質(zhì),考查了推理能力與運(yùn)算能力,屬于基礎(chǔ)題.2、D【解析】

首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點(diǎn)與圓心距離,數(shù)形結(jié)合即可得到答案.【詳解】作出可行域如圖所示設(shè)圓心為,則,過(guò)作直線(xiàn)的垂線(xiàn),垂足為B,顯然,又易得,所以,,故.故選:D.【點(diǎn)睛】本題考查與線(xiàn)性規(guī)劃相關(guān)的取值范圍問(wèn)題,涉及到向量的線(xiàn)性運(yùn)算、數(shù)量積、點(diǎn)到直線(xiàn)的距離等知識(shí),考查學(xué)生轉(zhuǎn)化與劃歸的思想,是一道中檔題.3、B【解析】由題意或4,則,故選B.4、D【解析】

在中,由正弦定理得;進(jìn)而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,考查了學(xué)生的運(yùn)算求解能力.5、A【解析】

作出二面角的補(bǔ)角、線(xiàn)面角、線(xiàn)線(xiàn)角的補(bǔ)角,由此判斷出兩個(gè)命題的正確性.【詳解】①如圖所示,過(guò)作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點(diǎn)睛】本題考查了折疊問(wèn)題、空間角、數(shù)形結(jié)合方法,考查了推理能力與計(jì)算能力,屬于中檔題.6、D【解析】由題意得,函數(shù)點(diǎn)定義域?yàn)榍?,所以定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱(chēng),故選D.7、D【解析】

用列舉法,通過(guò)循環(huán)過(guò)程直接得出與的值,得到時(shí)退出循環(huán),即可求得.【詳解】執(zhí)行程序框圖,可得,,滿(mǎn)足條件,,,滿(mǎn)足條件,,,滿(mǎn)足條件,,,由題意,此時(shí)應(yīng)該不滿(mǎn)足條件,退出循環(huán),輸出S的值為.故選D.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫(xiě)出每次循環(huán)得到的與的值是解題的關(guān)鍵,難度較易.8、A【解析】

利用雙曲線(xiàn):的焦點(diǎn)到漸近線(xiàn)的距離為,求出,的關(guān)系式,然后求解雙曲線(xiàn)的漸近線(xiàn)方程.【詳解】雙曲線(xiàn):的焦點(diǎn)到漸近線(xiàn)的距離為,可得:,可得,,則的漸近線(xiàn)方程為.故選A.【點(diǎn)睛】本題考查雙曲線(xiàn)的簡(jiǎn)單性質(zhì)的應(yīng)用,構(gòu)建出的關(guān)系是解題的關(guān)鍵,考查計(jì)算能力,屬于中檔題.9、D【解析】

對(duì)于集合,求得函數(shù)的定義域,再求得補(bǔ)集;對(duì)于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點(diǎn)睛】本題考查集合的補(bǔ)集、交集運(yùn)算,考查具體函數(shù)的定義域,考查解一元二次不等式.10、C【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.11、B【解析】

由題意可得的周期為,當(dāng)時(shí),,令,則的圖像和的圖像至少有個(gè)交點(diǎn),畫(huà)出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【詳解】是定義域?yàn)镽的偶函數(shù),滿(mǎn)足任意,,令,又,為周期為的偶函數(shù),當(dāng)時(shí),,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個(gè)零點(diǎn),則的圖像和的圖像至少有個(gè)交點(diǎn),,若,的圖像和的圖像只有1個(gè)交點(diǎn),不合題意,所以,的圖像和的圖像至少有個(gè)交點(diǎn),則有,即,.故選:B.【點(diǎn)睛】本題考查函數(shù)周期性及其應(yīng)用,解題過(guò)程中用到了數(shù)形結(jié)合方法,這也是高考??嫉臒狳c(diǎn)問(wèn)題,屬于中檔題.12、A【解析】

對(duì)函數(shù)求導(dǎo),可得,即可求出,進(jìn)而可求出答案.【詳解】因?yàn)?所以,則,解得,則.故選:A.【點(diǎn)睛】本題考查了函數(shù)的導(dǎo)數(shù)與極值,考查了學(xué)生的運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、①③④.【解析】

補(bǔ)圖成長(zhǎng)方體,在長(zhǎng)方體中利用割補(bǔ)法求四面體的體積,和外接球的表面積,以及異面直線(xiàn)的夾角,作出截面即可計(jì)算截面面積的最值.【詳解】根據(jù)四面體特征,可以補(bǔ)圖成長(zhǎng)方體設(shè)其邊長(zhǎng)為,,解得補(bǔ)成長(zhǎng),寬,高分別為的長(zhǎng)方體,在長(zhǎng)方體中:①四面體的體積為,故正確②異面直線(xiàn)所成角的正弦值等價(jià)于邊長(zhǎng)為的矩形的對(duì)角線(xiàn)夾角正弦值,可得正弦值為,故錯(cuò);③四面體外接球就是長(zhǎng)方體的外接球,半徑,其表面積為,故正確;④由于,故截面為平行四邊形,可得,設(shè)異面直線(xiàn)與所成的角為,則,算得,.故正確.故答案為:①③④.【點(diǎn)睛】此題考查根據(jù)幾何體求體積,外接球的表面積,異面直線(xiàn)夾角和截面面積最值,關(guān)鍵在于熟練掌握點(diǎn)線(xiàn)面位置關(guān)系的處理方法,補(bǔ)圖法作為解決體積和外接球問(wèn)題的常用方法,平常需要積累常見(jiàn)幾何體的補(bǔ)圖方法.14、【解析】

由題意,,則,得.由題意可設(shè)的方程為,,聯(lián)立方程組,消去得,恒成立,,,則,點(diǎn)到直線(xiàn)的距離為,則,又,則,當(dāng)且僅當(dāng)即時(shí)取等號(hào).故面積的取值范圍是.15、【解析】

化簡(jiǎn)得到,,根據(jù)余弦定理和均值不等式得到,根據(jù)面積公式計(jì)算得到答案.【詳解】,即,,故.根據(jù)余弦定理:,即.當(dāng)時(shí)等號(hào)成立,故.故答案為:.【點(diǎn)睛】本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學(xué)生的綜合應(yīng)用能力和計(jì)算能力.16、【解析】

觀(guān)察八卦中陰線(xiàn)和陽(yáng)線(xiàn)的情況為3線(xiàn)全為陽(yáng)線(xiàn)或全為陰線(xiàn)各一個(gè),還有6個(gè)是1陰2陽(yáng)和1陽(yáng)2陰各3個(gè)。抽取的兩卦中共2陽(yáng)4陰的所有可能情況是一卦全陰、另一卦2陽(yáng)1陰,或兩卦全是1陽(yáng)2陰?!驹斀狻堪素灾嘘幘€(xiàn)和陽(yáng)線(xiàn)的情況為3線(xiàn)全為陽(yáng)線(xiàn)的一個(gè),全為陰線(xiàn)的一個(gè),1陰2陽(yáng)的3個(gè),1陽(yáng)2陰的3個(gè)。抽取的兩卦中共2陽(yáng)4陰的所有可能情況是一卦全陰、另一卦2陽(yáng)1陰,或兩卦全是1陽(yáng)2陰?!鄰?個(gè)卦中任取2卦,共有種可能,兩卦中共2陽(yáng)4陰的情況有,所求概率為。故答案為:?!军c(diǎn)睛】本題考查古典概型,解題關(guān)鍵是確定基本事件的個(gè)數(shù)。本題不能受八卦影響,我們關(guān)心的是八卦中陰線(xiàn)和陽(yáng)線(xiàn)的條數(shù),這樣才能正確地確定基本事件的個(gè)數(shù)。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)由已知結(jié)合正弦定理先進(jìn)行代換,然后結(jié)合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后結(jié)合三角形的面積公式可求;(Ⅲ)結(jié)合二倍角公式及和角余弦公式即可求解.【詳解】(Ⅰ)因?yàn)?,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因?yàn)?,所以;(Ⅲ)由于,.所以.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面積公式的綜合應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.18、(1)答案見(jiàn)解析.(2)答案見(jiàn)解析【解析】

(1)利用復(fù)合函數(shù)求導(dǎo)求出,利用導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系即可求解.(2)首先證,令,求導(dǎo)可得單調(diào)遞增,由即可證出;再令,再利用導(dǎo)數(shù)可得單調(diào)遞增,由即可證出.【詳解】(1)顯然時(shí),,故在單調(diào)遞減.(2)首先證,令,則單調(diào)遞增,且,所以再令,所以單調(diào)遞增,即,∴【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)證明不等式,解題的關(guān)鍵掌握復(fù)合函數(shù)求導(dǎo),屬于難題.19、(1).(2).【解析】

由已知利用正弦定理,同角三角函數(shù)基本關(guān)系式可求,結(jié)合范圍,可求,由已知利用二倍角的余弦函數(shù)公式可得,結(jié)合范圍,可求A,根據(jù)三角形的內(nèi)角和定理即可解得C的值.由及正弦定理可得b的值,根據(jù)兩角和的正弦函數(shù)公式可求sinC的值,進(jìn)而根據(jù)三角形的面積公式即可求解.【詳解】由已知可得,又由正弦定理,可得,即,,,,即,又,,或舍去,可得,.,,,由正弦定理,可得,,.【點(diǎn)睛】本題主要考查了正弦定理,同角三角函數(shù)基本關(guān)系式,二倍角的余弦函數(shù)公式,三角形的內(nèi)角和定理,兩角和的正弦函數(shù)公式,三角形的面積公式等知識(shí)在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.20、詳見(jiàn)解析【解析】

選擇①,利用正弦定理求得,利用余弦定理求得,再計(jì)算邊上的高.選擇②,利用正弦定理得出,由余弦定理求出,再求邊上的高.選擇③,利用余弦定理列方程求出,再計(jì)算邊上的高.【詳解】選擇①,在中,由正弦定理得,即,解得;由余弦定理得,即,化簡(jiǎn)得,解得或(舍去);所以邊上的高為.選擇②,在中,由正弦定理得,又因?yàn)?,所以,即;由余弦定理得,即,化?jiǎn)得,解得或(舍去);所以邊上的高為.選擇③,在中,由,得;由余弦定理得,即,化簡(jiǎn)得,解得或(舍去);所以邊上的高為.【點(diǎn)睛】本小題主要考查真閑的了、余弦定理解三角形,屬于中檔題.21、(1)證明見(jiàn)解析;(2)存在點(diǎn)是線(xiàn)段的中點(diǎn),使得直線(xiàn)與平面所成角的正弦值為.【解析】

(1)在直角梯形中,根據(jù),,得為等邊三角形,再由余弦定理求得,滿(mǎn)足,得到,再根據(jù)平面平面,利用面面垂直的性質(zhì)定理證明.(2)建立空間直角坐標(biāo)系:假設(shè)在上存在一點(diǎn)使直線(xiàn)與平面所成角的正弦值為,且,,求得平面的一個(gè)法向量,再利用線(xiàn)面角公式求解.【詳解】(1)證明:在直角梯形中,,,因此為等邊三角形,從而,又,由余弦定理得:,∴,即,且折疊后與位置關(guān)系不變,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵為等邊三角形,為的中點(diǎn),∴,又∵平面平面,且平面平面,∴平面,取的中點(diǎn),連結(jié),則,從而,以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系:則,,則,假設(shè)在上存在一點(diǎn)使直線(xiàn)與平面所成角的正弦值為,且,,∵,∴,故,∴,又,該平面的法向量為,,令得,∴,解得或(舍),

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論