




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省長沙市天心區(qū)長郡中學(xué)2025屆數(shù)學(xué)高二上期末統(tǒng)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則()A. B.1C. D.2.已知橢圓的長軸長,短軸長,焦距長成等比數(shù)列,則橢圓離心率為()A. B.C. D.3.已知點(diǎn)F為拋物線C:的焦點(diǎn),點(diǎn),若點(diǎn)Р為拋物線C上的動點(diǎn),當(dāng)取得最大值時,點(diǎn)P恰好在以F,為焦點(diǎn)的橢圓上,則該橢圓的離心率為()A. B.C. D.4.已知等差數(shù)列的前項和為,,,,則的值為()A. B.C. D.5.大數(shù)學(xué)家阿基米德的墓碑上刻有他最引以為豪的數(shù)學(xué)發(fā)現(xiàn)的象征圖——球及其外切圓柱(如圖).以此紀(jì)念阿基米德發(fā)現(xiàn)球的體積和表面積,則球的體積和表面積均為其外切圓柱體積和表面積的()A. B.C. D.6.在等差數(shù)列中,,,則的值是()A.130 B.260C.156 D.1687.函數(shù)的定義域是,,對任意,,則不等式的解集為()A. B.C.或 D.或8.與的等差中項是()A. B.C. D.9.若正三棱柱的所有棱長都相等,D是的中點(diǎn),則直線AD與平面所成角的正弦值為A. B.C. D.10.如圖,在三棱錐中,,,,點(diǎn)在平面內(nèi),且,設(shè)異面直線與所成角為,則的最大值為()A. B.C. D.11.小明騎車上學(xué),開始時勻速行駛,途中因交通堵塞停留了一段時間,后為了趕時間加快速度行駛.與以上事件吻合得最好的圖象是()A. B.C. D.12.某中學(xué)的“希望工程”募捐小組暑假期間走上街頭進(jìn)行了一次募捐活動,共收到捐款1200元.他們第1天只得到10元,之后采取了積極措施,從第2天起,每一天收到的捐款都比前一天多10元.這次募捐活動一共進(jìn)行的天數(shù)為()A.13 B.14C.15 D.16二、填空題:本題共4小題,每小題5分,共20分。13.經(jīng)過兩點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程是________14.若平面內(nèi)兩條直線,平行,則實數(shù)______15.若,且,則_____________16.設(shè),則曲線在點(diǎn)處的切線的傾斜角是_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了解某市家庭用電量的情況,該市統(tǒng)計局調(diào)查了若干戶居民去年一年的月均用電量(單位:),得到如圖所示的頻率分布直方圖.(1)估計月均用電量的眾數(shù);(2)求a的值;(3)為了既滿足居民的基本用電需求,又提高能源的利用效率,市政府計劃采用階梯電價,月均用電量不高于平均數(shù)的為第一檔,高于平均數(shù)的為第二檔,已知某戶居民月均用電量為,請問該戶居民應(yīng)該按那一檔電價收費(fèi),說明理由.18.(12分)已知雙曲線,直線l與交于P、Q兩點(diǎn)(1)若點(diǎn)是雙曲線的一個焦點(diǎn),求的漸近線方程;(2)若點(diǎn)P的坐標(biāo)為,直線l的斜率等于1,且,求雙曲線的離心率19.(12分)已知圓M:的圓心為M,圓N:的圓心為N,一動圓與圓N內(nèi)切,與圓M外切,動圓的圓心E的軌跡為曲線C(1)求曲線C的方程;(2)已知點(diǎn),直線l與曲線C交于A,B兩點(diǎn),且,直線l是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由20.(12分)如圖,在三棱柱中,平面ABC,,,,點(diǎn)D,E分別在棱和棱上,且,,M為棱中點(diǎn)(1)求證:;(2)求直線AB與平面所成角的正弦值21.(12分)已知點(diǎn)關(guān)于直線的對稱點(diǎn)為Q,以Q為圓心的圓與直線相交于A,B兩點(diǎn),且(1)求圓Q的方程;(2)過坐標(biāo)原點(diǎn)O任作一直線交圓Q于C,D兩點(diǎn),求證:為定值22.(10分)等比數(shù)列的各項均為正數(shù),且,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先根據(jù)共軛復(fù)數(shù)的定義可得,再根據(jù)復(fù)數(shù)的運(yùn)算法則即可求出【詳解】因為,所以故選:B2、A【解析】由題意,,結(jié)合,求解即可【詳解】∵橢圓的長軸長,短軸長,焦距長成等比數(shù)列∴∴又∵∴∴,即∴e=又在橢圓e>0∴e=故選:A3、D【解析】過點(diǎn)P引拋物線準(zhǔn)線的垂線,交準(zhǔn)線于D,根據(jù)拋物線的定義可知,記,根據(jù)題意,當(dāng)最小,即直線與拋物線相切時滿足題意,進(jìn)而解出此時P的坐標(biāo),解得答案即可.【詳解】如圖,易知點(diǎn)在拋物線C的準(zhǔn)線上,作PD垂直于準(zhǔn)線,且與準(zhǔn)線交于點(diǎn)D,記,則.由拋物線定義可知,.由圖可知,當(dāng)取得最大值時,最小,此時直線與拋物線相切,設(shè)切線方程為,代入拋物線方程并化簡得:,,方程化為:,代入拋物線方程解得:,即,則,.于是,橢圓的長軸長,半焦距,所以橢圓的離心率.故選:D.4、A【解析】由可求得,利用可構(gòu)造方程求得.【詳解】,,,,,解得:.故選:A.5、C【解析】設(shè)球的半徑為,則圓柱的底面半徑為,高為,分別求出球的體積與表面積,圓柱的體積與表面積,從而得出答案.【詳解】設(shè)球的半徑為,則圓柱的底面半徑為,高為所以球的體積為,表面積為.圓柱的體積為:,所以其體積之比為:圓柱的側(cè)面積為:,圓柱的表面積為:所以其表面積之比為:故選:C6、A【解析】由等差數(shù)列的性質(zhì)計算得到,進(jìn)而利用求和公式,變形求出答案.【詳解】由題意得:,故故選:A7、A【解析】構(gòu)造函數(shù),結(jié)合已知條件可得恒成立,可得為上的減函數(shù),再由,從而將不等式轉(zhuǎn)換為,根據(jù)單調(diào)性即可求解.【詳解】構(gòu)造函數(shù),因為,所以為上的增函數(shù)又因為,所以原不等式轉(zhuǎn)化為,即,解得.所以原不等式的解集為,故選:A.8、A【解析】代入等差中項公式即可解決.【詳解】與的等差中項是故選:A9、A【解析】建立空間直角坐標(biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后求出直線的方向向量和平面的法向量,借助向量的運(yùn)算求出線面角的正弦值【詳解】取AC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系設(shè)三棱柱的棱長為2,則,∴設(shè)為平面的一個法向量,由故令,得設(shè)直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點(diǎn)睛】空間向量的引入為解決立體幾何問題提供了較好的方法,解題時首先要建立適當(dāng)?shù)淖鴺?biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后借助向量的運(yùn)算,將空間圖形的位置關(guān)系或數(shù)量關(guān)系轉(zhuǎn)化為向量的運(yùn)算處理.在解決空間角的問題時,首先求出向量夾角的余弦值,然后再轉(zhuǎn)化為所求的空間角.解題時要注意向量的夾角和空間角之間的聯(lián)系和區(qū)別,避免出現(xiàn)錯誤10、D【解析】設(shè)線段的中點(diǎn)為,連接,過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),證明出平面,然后以點(diǎn)為坐標(biāo)原點(diǎn),、、分別為、、軸的正方向建立空間直角坐標(biāo)系,設(shè),其中,且,求出的最大值,利用空間向量法可求得的最大值.【詳解】設(shè)線段的中點(diǎn)為,連接,,為的中點(diǎn),則,,則,,同理可得,,,平面,過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),因為,所以,為等邊三角形,故為的中點(diǎn),平面,平面,則,,,平面,以點(diǎn)為坐標(biāo)原點(diǎn),、、分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,因為是邊長為的等邊三角形,為的中點(diǎn),則,則、、、,由于點(diǎn)在平面內(nèi),可設(shè),其中,且,從而,因為,則,所以,,故當(dāng)時,有最大值,即,故,即有最大值,所以,.故選:D.【點(diǎn)睛】方法點(diǎn)睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.11、C【解析】先研究四個選項中圖象的特征,再對照小明上學(xué)路上的運(yùn)動特征,兩者對應(yīng)即可選出正確選項.【詳解】考查四個選項,橫坐標(biāo)表示時間,縱坐標(biāo)表示的是離開學(xué)校的距離,由此知,此函數(shù)圖象一定是下降的,由此排除A;再由小明騎車上學(xué),開始時勻速行駛可得出圖象開始一段是直線下降型,又途中因交通堵塞停留了一段時間,故此時有一段函數(shù)圖象與x軸平行,由此排除D,之后為了趕時間加快速度行駛,此一段時間段內(nèi)函數(shù)圖象下降的比較快,由此可確定C正確,B不正確故選C【點(diǎn)睛】本題考查函數(shù)的表示方法,關(guān)鍵是理解坐標(biāo)系的度量與小明上學(xué)的運(yùn)動特征,屬于基礎(chǔ)題.12、C【解析】由題意可得募捐構(gòu)成了一個以10元為首項,以10元為公差的等差數(shù)列,設(shè)共募捐了天,然后建立關(guān)于的方程,求出即可【詳解】由題意可得,第一天募捐10元,第二天募捐20元,募捐構(gòu)成了一個以10元為首項,以10元為公差的等差數(shù)列,根據(jù)題意,設(shè)共募捐了天,則,解得或(舍去),所以,故選:二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)雙曲線的標(biāo)準(zhǔn)方程將點(diǎn)坐標(biāo)代入求參數(shù),即可確定標(biāo)準(zhǔn)方程.【詳解】令,則,可得,令,則,無解.故雙曲線的標(biāo)準(zhǔn)方程是.故答案為:.14、-1或2【解析】根據(jù)兩直線平行,利用直線平行的條件列出方程解得答案.【詳解】∵,∴,解得或,經(jīng)驗證都符合題意,故答案為:-1或215、【解析】由,可得,,,從而利用換底公式及對數(shù)的運(yùn)算性質(zhì)即可求解.【詳解】解:因為,所以,,,又,所以,所以,所以,故答案為:.16、【解析】利用導(dǎo)數(shù)的定義,化簡整理,可得,根據(jù)導(dǎo)數(shù)的幾何意義,即可求得答案.【詳解】因為=,所以,則曲線在點(diǎn)處的切線斜率為,即,又所以所求切線的傾斜角為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)175(2)0.004(3)該居民該戶居民應(yīng)該按第二檔電價收費(fèi),理由見解析【解析】(1)在區(qū)間對應(yīng)的小矩形最高,由此能求出眾數(shù);(2)利用各個區(qū)間的頻率之和為1,即可求出值;(3)求出月均用電量的平均數(shù)的估計值即可判斷.【小問1詳解】由題知,月均用電量在區(qū)間內(nèi)的居民最多,可以將這個區(qū)間的中點(diǎn)175作為眾數(shù)的估計值,所以眾數(shù)的估計值為175.【小問2詳解】由題知:,解得則的值為0.004.【小問3詳解】平均數(shù)的估計值為:,則月均用電量的平均數(shù)的估計值為,又∵∴該居民該戶居民應(yīng)該按第二檔電價收費(fèi).18、(1)(2)或【解析】(1)根據(jù)題意可得,又因為且,解得,可得雙曲線方程,進(jìn)而可得的漸近線方程(2)設(shè)直線的方程為:,,,聯(lián)立直線與雙曲線方程,可得關(guān)于的一元二次方程,由韋達(dá)定理可得,,再由兩點(diǎn)之間距離公式得,解得,進(jìn)而由可求出,即可求得離心率.【小問1詳解】∵點(diǎn)是雙曲線的一個焦點(diǎn),∴,又∵且,解得,∴雙曲線方程為,∴的漸近線方程為:;小問2詳解】設(shè)直線的方程為,且,,聯(lián)立,可得,則,∴,即,∴,解得或,即由可得或,故雙曲線的離心率或.19、(1),;(2)過,.【解析】(1)根據(jù)兩圓內(nèi)切和外切的性質(zhì),結(jié)合雙曲線的定義進(jìn)行求解即可;(2)設(shè)出直線l的方程與雙曲線的方程聯(lián)立,利用一元二次方程根與系數(shù)關(guān)系,結(jié)合平面向量數(shù)量積的坐標(biāo)表示公式進(jìn)行求解判斷即可.【小問1詳解】設(shè)圓E的圓心為,半徑為r,則,,所以由雙曲線定義可知,E的軌跡是以M,N為焦點(diǎn)、實軸長為6的雙曲線的右支,所以動圓的圓心E的軌跡方程為,;【小問2詳解】設(shè),,直線l的方程為由得,且,故又,所以又,,所以,即.又故或若,則直線l的方程為,過點(diǎn),與題意矛盾,所以,故,所以直線l的方程為,過點(diǎn)【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用一元二次方程根與系數(shù)的關(guān)系是解題的關(guān)鍵.20、(1)證明見解析;(2).【解析】(1)由線面垂直、等腰三角形的性質(zhì)易得、,再根據(jù)線面垂直的判定及性質(zhì)證明結(jié)論;(2)構(gòu)建空間直角坐標(biāo)系,確定相關(guān)點(diǎn)坐標(biāo),進(jìn)而求的方向向量、面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求直線與平面所成角的正弦值.【小問1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點(diǎn),則,又,則平面,由平面,因此,.【小問2詳解】以為原點(diǎn),以,,為軸、軸、軸的正方向建立空間直角坐標(biāo)系,如圖所示,可得:,,,,,,.∴,,,,設(shè)為面的法向量,則,令得,設(shè)與平面所成角為,則,∴直線與平面所成角的正弦值為.21、(1)(2)證明見解析【解析】(1)先求出點(diǎn)坐標(biāo),然后根據(jù)圓心到直線的距離公式及的值求出半
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學(xué)生簡歷自我評價(15篇)
- 《男生女生》主題班會課 教學(xué)設(shè)計
- 秋收的心得小學(xué)(10篇)
- 初一軍訓(xùn)心得1000字范文(18篇)
- 《交通工具標(biāo)志及含義》課件
- 《全球市場營銷條形碼》課件
- 2025-2026年包裝服務(wù)的綠色化與市場趨勢
- 音樂教干教師暑期培訓(xùn)心得體會(16篇)
- 設(shè)計部月度工作計劃范例(7篇)
- 2025年鎮(zhèn)江c1貨運(yùn)上崗證模擬考試
- 2024年上海市虹口區(qū)街道社區(qū)工作者招聘筆試真題
- 2025年浙江寧波市鎮(zhèn)海區(qū)國資系統(tǒng)國有企業(yè)招聘筆試參考題庫含答案解析
- 廣東省2024-2025學(xué)年佛山市普通高中教學(xué)質(zhì)量檢測英語試卷及答案(二)高三試卷(佛山二模)
- 廣西輔警面試題庫及答案
- 旅游行測試題及答案
- 鐵路調(diào)車綜合實訓(xùn)鐵鞋的使用和注意事項課件
- 足浴合伙投資協(xié)議書
- 2025年江蘇揚(yáng)州水利建筑工程有限責(zé)任公司招聘筆試參考題庫附帶答案詳解
- 內(nèi)墻涂料施工方案
- 2025年春季部編版五年級語文文化素養(yǎng)提升計劃
- (T8聯(lián)考)2025屆高三部分重點(diǎn)中學(xué)3月聯(lián)合測評語文試卷(含答案詳解)
評論
0/150
提交評論