版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省鶴壁市??h第二高級中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末復(fù)習檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)單調(diào)遞增區(qū)間為A. B.C D.2.下列函數(shù)為奇函數(shù)的是A. B.C. D.3.命題“任意實數(shù)”的否定是()A.任意實數(shù) B.存在實數(shù)C.任意實數(shù) D.存實數(shù)4.函數(shù),若,,,則()A. B.C. D.5.表面積為24的正方體的頂點都在同一個球面上,則該球的表面積是A. B.C. D.6.下表是某次測量中兩個變量的一組數(shù)據(jù),若將表示為關(guān)于的函數(shù),則最可能的函數(shù)模型是234567890.631.011.261.461.631.771.891.99A.一次函數(shù)模型 B.二次函數(shù)模型C.指數(shù)函數(shù)模型 D.對數(shù)函數(shù)模型7.如圖,在正方體中,異面直線與所成的角為()A.90° B.60°C.45° D.30°8.已知向量,,則向量與的夾角為()A. B.C. D.9.在三棱柱中,各棱長相等,側(cè)棱垂直于底面,點是側(cè)面的中心,則與平面所成角的大小是()A. B.C. D.10.已知是非零向量且滿足,,則與的夾角是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,正方形ABCD中,M,N分別是BC,CD中點,若,則______.12.函數(shù)的定義域是________.13.給出下列命題:①函數(shù)是偶函數(shù);②方程是函數(shù)的圖象的一條對稱軸方程;③在銳角中,;④函數(shù)的最小正周期為;⑤函數(shù)的對稱中心是,,其中正確命題的序號是________.14.已知函數(shù),則函數(shù)零點的個數(shù)為_________15.設(shè),,,則______16.若,則的最小值是___________,此時___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(其中),函數(shù)(其中).(1)若且函數(shù)存在零點,求的取值范圍;(2)若是偶函數(shù)且函數(shù)的圖象與函數(shù)的圖象只有一個公共點,求實數(shù)的取值范圍.18.已知(1)當時,求的值;(2)若的最小值為,求實數(shù)的值;(3)是否存在這樣的實數(shù),使不等式對所有都成立.若存在,求出的取值范圍;若不存在,請說明理由19.已知函數(shù)求:的最小正周期;的單調(diào)增區(qū)間;在上的值域20.求解下列問題:(1)角的終邊經(jīng)過點,且,求的值(2)已知,,求的值21.已知:,:,分別求m的值,使得和:垂直;平行;重合;相交
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】,所以.故選A2、D【解析】函數(shù)是非奇非偶函數(shù);和是偶函數(shù);是奇函數(shù),故選D考點:函數(shù)的奇偶性3、B【解析】根據(jù)含全稱量詞的命題的否定求解.【詳解】根據(jù)含量詞命題的否定,命題“任意實數(shù)”的否定是存在實數(shù),故選:B4、A【解析】首先判斷,和的大小關(guān)系,然后根據(jù)函數(shù)的單調(diào)性,判斷的大小關(guān)系.【詳解】,,,,,,是上的減函數(shù),.故選:A.5、A【解析】根據(jù)正方體的表面積,可求得正方體的棱長,進而求得體對角線的長度;由體對角線為外接球的直徑,即可求得外接球的表面積【詳解】設(shè)正方體的棱長為a因為表面積為24,即得a=2正方體的體對角線長度為所以正方體的外接球半徑為所以球的表面積為所以選A【點睛】本題考查了立體幾何中空間結(jié)構(gòu)體的外接球表面積求法,屬于基礎(chǔ)題6、D【解析】對于,由于均勻增加,而值不是均勻遞增,不是一次函數(shù)模型;對于,由于該函數(shù)是單調(diào)遞增,不是二次函數(shù)模型;對于,過不是指數(shù)函數(shù)模型,故選D.7、B【解析】連接,可證明,然后可得即為異面直線與所成的角,然后可求出答案.【詳解】連接,因為是正方體,所以和平行且相等所以四邊形是平行四邊形,所以,所以為異面直線與所成的角.因為是等邊三角形,所以故選:B8、C【解析】結(jié)合平面向量線性運算的坐標表示求出,然后代入模長公式分別求出和,進而根據(jù)平面向量的夾角公式即可求出夾角的余弦值,進而求出結(jié)果.【詳解】,,,,從而,且,記與的夾角為,則又,,故選:9、C【解析】如圖,取中點,則平面,故,因此與平面所成角即為,設(shè),則,,即,故,故選:C.10、B【解析】利用向量垂直求得,代入夾角公式即可.【詳解】設(shè)的夾角為;因為,,所以,則,則故選:B【點睛】向量數(shù)量積的運算主要掌握兩點:一是數(shù)量積的基本公式;二是向量的平方等于向量模的平方.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】以,為基底,由平面向量基本定理,列方程求解,即可得出結(jié)果.【詳解】設(shè),則,由于可得,解得,所以故答案為:【點睛】本題考查平面向量基本定理的運用,考查向量的加法運算,考查運算求解能力,屬于中檔題.12、【解析】利用已知條件可得出關(guān)于的不等式組,由此可解得函數(shù)的定義域.【詳解】對于函數(shù),有,解得.因此,函數(shù)的定義域為.故答案:.13、①②③【解析】由誘導(dǎo)公式化簡得函數(shù),判斷①正確;求出函數(shù)的圖象的對稱軸(),當時,,判斷②正確;在銳角中,由化簡得到,判斷③正確;直接求出函數(shù)的最小正周期為,判斷④錯誤;直接求出函數(shù)的對稱中心是,判斷⑤錯誤.【詳解】①因為函數(shù),所以函數(shù)是偶函數(shù),故①正確;②因為函數(shù),所以函數(shù)圖象的對稱軸(),即(),當時,,故②正確;③在銳角中,,即,所以,故③正確;④函數(shù)的最小正周期為,故④錯誤;⑤令,解得,所以函數(shù)的對稱中心是,故⑤錯誤.故答案為:①②③【點睛】本題考查三角函數(shù)的圖象與性質(zhì)、誘導(dǎo)公式與三角恒等變換,是中檔題.14、【解析】解方程,即可得解.【詳解】當時,由,可得(舍)或;當時,由,可得.綜上所述,函數(shù)零點的個數(shù)為.故答案為:.15、【解析】利用向量的坐標運算先求出的坐標,再利用向量的數(shù)量積公式求出的值【詳解】因為,,,所以,所以,故答案為【點睛】本題考查向量的坐標運算,考查向量的數(shù)量積公式,熟記坐標運算法則,準確計算是關(guān)鍵,屬于基礎(chǔ)題16、①.1②.0【解析】利用基本不等式求解.【詳解】因為,所以,當且僅當,即時,等號成立,所以其最小值是1,此時0,故答案為:1,0三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)根據(jù)題意,分離參數(shù)且利用對數(shù)型復(fù)合函數(shù)的單調(diào)性求得的值域,即可求得參數(shù)的取值范圍;(2)根據(jù)是偶函數(shù)求得參數(shù),再根據(jù)題意,求解指數(shù)方程即可求得的取值范圍.【小問1詳解】由題意知函數(shù)存零點,即有解.又,易知在上是減函數(shù),又,,即,所以,所以的取值范圍是.【小問2詳解】的定義域為,若是偶函數(shù),則,即解得.此時,,所以即為偶函數(shù).又因為函數(shù)與的圖象有且只有一個公共點,故方程只有一解,即方程有且只有一個實根令,則方程有且只有一個正根①當時,,不合題意,②當時,方程有兩相等正根,則,且,解得,滿足題意;③若一個正根和一個負根,則,即時,滿足題意,綜上所述:實數(shù)的取值范圍為或.【點睛】本題考察利用函數(shù)奇偶性求參數(shù)值,以及對數(shù)方程的求解,對數(shù)型復(fù)合函數(shù)值域的求解,解決問題的關(guān)鍵是熟練的掌握對數(shù)函數(shù)的性質(zhì),屬綜合困難題.18、(1)(2)或(3)存在,的取值范圍為【解析】(1)先化簡,再代入進行求解;(2)換元法,化為二次函數(shù),結(jié)合對稱軸分類討論,求出最小值時m的值;(3)換元法,參變分離,轉(zhuǎn)化為在恒成立,根據(jù)單調(diào)性求出取得最大值,進而求出的取值范圍.【小問1詳解】,當時,【小問2詳解】設(shè),則,,,其對稱軸為,的最小值為,則;的最小值為;則綜上,或【小問3詳解】由,對所有都成立.設(shè),則,恒成立,在恒成立,當時,遞減,則在遞增,時取得最大值得,∴所以存在符合條件的實數(shù),且m的取值范圍為19、(1);(2),;(3).【解析】利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性,得出結(jié)論;利用正弦函數(shù)的單調(diào)性,求得的單調(diào)增區(qū)間;利用正弦函數(shù)的定義域和值域,求得在上的值域【詳解】函數(shù),故函數(shù)的最小正周期為.令,求得,可得函數(shù)的增區(qū)間為,在上,,,,即的值域為【點睛】本題主要考查三角恒等變換,正弦函數(shù)的周期性,單調(diào)性,定義域和值域,屬于中檔題.單調(diào)性:根據(jù)y=sint和t=的單調(diào)性來研究,由得單調(diào)增區(qū)間;由得單調(diào)減區(qū)間.20、(1)或(2)【解析】(1)結(jié)合三角函數(shù)的定義求得,由此求得.(2)通過平方的方法求得,由此求得.【小問1詳解】依題意或.所以或,所以或.【小問2詳解】由于,所以,,由于,所以,,,所以,所以,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度合板銷售與購買協(xié)議
- 2024年水電安裝工程勞務(wù)協(xié)議細化
- 2024年貨物運輸保障協(xié)議樣本
- 2024年招聘流程合規(guī)協(xié)議書范例
- 2024年度工程領(lǐng)域融資擔保協(xié)議模板
- 2024專用充值卡發(fā)行協(xié)議范本
- 2024年采購流程協(xié)議格式書
- 2024年室內(nèi)瓦工施工合作協(xié)議樣本
- 文書模板-《土地租賃合同》
- 2024批次原材料采購明確協(xié)議條款
- 《建筑基坑工程監(jiān)測技術(shù)標準》(50497-2019)
- ?婦科子宮肌瘤一病一品優(yōu)質(zhì)護理匯報
- 細胞因子風暴應(yīng)急預(yù)案
- 食物頻率法問卷調(diào)查(FFQ)
- 上海市浦東新區(qū)2023-2024學(xué)年五年級上學(xué)期期中數(shù)學(xué)試卷
- 大學(xué)軍事理論課教程第四章現(xiàn)代戰(zhàn)爭第一節(jié) 戰(zhàn)爭概述
- 我國煤炭轉(zhuǎn)型調(diào)研報告
- 產(chǎn)品合格證出廠合格證A4打印模板
- (通用)國家電網(wǎng)考試歷年真題庫(附答案)
- 學(xué)浪入駐教師合作協(xié)議范本
- 外腳手架拆除安全技術(shù)交底3篇
評論
0/150
提交評論