




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省五校2025屆數(shù)學(xué)高二上期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列中,,,是的前n項和,則()A. B.C. D.2.已知全集,,()A. B.C. D.3.橢圓()的右頂點是拋物線的焦點,且短軸長為2,則該橢圓方程為()A. B.C. D.4.如圖,在棱長為的正方體中,為線段的中點,為線段的中點,則直線到直線的距離為()A. B.C. D.5.已知數(shù)列為等比數(shù)列,若,,則的值為()A.8 B.C.16 D.±166.圓截直線所得弦的最短長度為()A.2 B.C. D.47.已知數(shù)列為等比數(shù)列,若,則的值為()A.-4 B.4C.-2 D.28.已知拋物線x2=4y上有一條長為6的動弦AB,則AB的中點到x軸的最短距離為()A. B.C.1 D.29.直線的傾斜角為()A.30° B.60°C.90° D.120°10.已知直線經(jīng)過拋物線的焦點,且與該拋物線交于,兩點,若滿足,則直線的方程為()A. B.C. D.11.已知數(shù)列是等比數(shù)列,且,則的值為()A.3 B.6C.9 D.3612.在平面上有及內(nèi)一點O滿足關(guān)系式:即稱為經(jīng)典的“奔馳定理”,若的三邊為a,b,c,現(xiàn)有則O為的()A.外心 B.內(nèi)心C.重心 D.垂心二、填空題:本題共4小題,每小題5分,共20分。13.記為等差數(shù)列的前n項和.若,則__________14.在空間直角坐標(biāo)系中,已知向量,則在軸上的投影向量為________.15.如圖,棱長為1的正方體,點沿正方形按的方向作勻速運動,點沿正方形按的方向以同樣的速度作勻速運動,且點分別從點A與點同時出發(fā),則的中點的軌跡所圍成圖形的面積大小是________.16.如圖,在棱長為1的正方體中,點M為線段上的動點,下列四個結(jié)論:①存在點M,使得直線AM與直線夾角為30°;②存在點M,使得與平面夾角的正弦值為;③存在點M,使得三棱錐體積為;④存在點M,使得,其中為二面角的大小,為直線與直線AB所成的角則上述結(jié)論正確的有______.(填上正確結(jié)論的序號)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在①,;②,,③,這三個條件中任選一個,補充在下面問題中并解決問題問題:設(shè)等差數(shù)列的前項和為,________________,若,判斷是否存在最大值,若存在,求出取最大值時的值;若不存在,說明理由注:如果選擇多個條件分別解答.按第一個解答記分18.(12分)已知拋物線的焦點為F,點在拋物線上.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)過點的直線交拋物錢C于A,B兩點,O為坐標(biāo)原點,記直線OA,OB的斜率分別,,求證:為定值.19.(12分)在①成等差數(shù)列;②成等比數(shù)列;③這三個條件中任選一個,補充在下面的問題中,并對其求解.問題:已知為數(shù)列的前項和,,且___________.(1)求數(shù)列的通項公式;(2)記,求數(shù)列前項和.注:如果選擇多個條件分別解答,按第一個解答計分.20.(12分)已知等比數(shù)列的公比,且,的等差中項為5,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.(12分)設(shè)關(guān)于x的不等式的解集為A,關(guān)于x的不等式的解集為B(1)求集合A,B;(2)若是的必要不充分條件,求實數(shù)m的取值范圍22.(10分)甲乙兩人輪流投籃,每人每次投一球,約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時投籃結(jié)束,設(shè)甲每次投籃投中的概率為,乙每次投籃投中的概率為,且各次投籃互不影響(1)求甲乙各投球一次,比賽結(jié)束的概率;(2)求甲獲勝的概率
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由,得到為遞增數(shù)列,又由,得到,化簡,即可求解.【詳解】解:由,得,又,所以,所以,即,所以數(shù)列為遞增數(shù)列,所以,得,即,又由是的前項和,則.故選:D.【點睛】關(guān)鍵點睛:本題考查數(shù)列求和問題,關(guān)鍵在于由已知條件得出,運用裂項相消求和法.2、C【解析】根據(jù)條件可得,則,結(jié)合條件即可得答案.【詳解】因,所以,則,又,所以,即.故選:C3、A【解析】求得拋物線的焦點從而求得,再結(jié)合題意求得,即可寫出橢圓方程.【詳解】因為拋物線的焦點坐標(biāo)為,故可得;又短軸長為2,故可得,即;故橢圓方程為:.故選:.4、C【解析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉(zhuǎn)化成點到直線的距離,結(jié)合余弦定理即同角三角函數(shù)基本關(guān)系,求得,因此可得,進(jìn)而可得直線到直線的距離;【詳解】解:如圖,連接,,,,在平面中,作,為垂足,因為,分別為,的中點,因為,,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因為,所以是銳角,所以,在直角三角形中,,故直線到直線的距離為;故選:C5、A【解析】利用等比數(shù)列的通項公式即可求解.【詳解】因為為等比數(shù)列,設(shè)的公比為,則,,兩式相除可得,所以,所以,故選:A.6、A【解析】由題知直線過定點,且在圓內(nèi),進(jìn)而求解最值即可.【詳解】解:將直線化為,所以聯(lián)立方程得所以直線過定點將化為標(biāo)準(zhǔn)方程得,即圓心為,半徑為,由于,所以點在圓內(nèi),所以點與圓圓心間的距離為,所以圓截直線所得弦的最短長度為故選:A7、B【解析】根據(jù),利用等比數(shù)列的通項公式求解.【詳解】因為,所以,則,解得,所以.故選:B8、D【解析】由題意知,拋物線的準(zhǔn)線l:y=-1,過A作AA1⊥l于A1,過B作BB1⊥l于B1,設(shè)弦AB的中點為M,過M作MM1⊥l于M1.則|MM1|=.|AB|≤|AF|+|BF|(F為拋物線的焦點),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x軸的距離d≥2.9、B【解析】根據(jù)給定方程求出直線斜率,再利用斜率的定義列式計算得解.【詳解】直線的斜率,設(shè)其傾斜角為,顯然,則有,解得,直線的傾斜角為.故選:B10、C【解析】求出拋物線的焦點,設(shè)出直線方程,代入拋物線方程,運用韋達(dá)定理和向量坐標(biāo)表示,解得,即可得出直線的方程.【詳解】解:拋物線的焦點,設(shè)直線為,則,整理得,則,.由可得,代入上式即可得,所以,整理得:.故選:C.【點睛】本題考查直線和拋物線的位置關(guān)系,主要考查韋達(dá)定理和向量共線的坐標(biāo)表示,考查運算能力,屬于中檔題.11、C【解析】應(yīng)用等比中項的性質(zhì)有,結(jié)合已知求值即可.【詳解】由等比數(shù)列的性質(zhì)知:,,,所以,又,所以.故選:C12、B【解析】利用三角形面積公式,推出點O到三邊距離相等。【詳解】記點O到AB、BC、CA的距離分別為,,,,因為,則,即,又因為,所以,所以點P是△ABC的內(nèi)心.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】因為是等差數(shù)列,根據(jù)已知條件,求出公差,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】是等差數(shù)列,且,設(shè)等差數(shù)列的公差根據(jù)等差數(shù)列通項公式:可得即:整理可得:解得:根據(jù)等差數(shù)列前項和公式:可得:.故答案:.【點睛】本題主要考查了求等差數(shù)列的前項和,解題關(guān)鍵是掌握等差數(shù)列的前項和公式,考查了分析能力和計算能力,屬于基礎(chǔ)題.14、【解析】根據(jù)向量坐標(biāo)意義及投影的定義得解.【詳解】因為向量,所以在軸上的投影向量為.故答案為:15、##【解析】畫出符合要求的圖形,觀察得到軌跡是菱形,并進(jìn)行充分性和必要性兩方面的證明,并求解出軌跡圖形的面積.【詳解】如圖,分別是正方形ABCD,,的中心,下面進(jìn)行證明:菱形EFGC的周界即為動線段PQ的中點H的軌跡,首先證明:如果點H是動線段PQ的中點,那么點H必在菱形EFGC的周界上,分兩種情況證明:(1)P,Q分別在某一個定角的兩邊上,不失一般性,設(shè)P從B到C,而Q同時從到C,由于速度相同,所以PQ必平行于,故PQ的中點H必在上;(2)P,Q分別在兩條異面直線上,不失一般性,設(shè)P從A到B,同時Q從到,由于速度相同,則,由于H為PQ的中點,連接并延長,交底面ABCD于點T,連接PT,則平面與平面交線是PT,∵∥平面,∴∥PT,∴,而,∥BC,∴是等腰直角三角形,,從而T在AC上,可以證明FH∥AC,GH∥AC,DG∥AC,基于平行線的唯一性,顯然H在DG上,綜合(1)(2)可證明,線段PQ的中點一定在菱形EFGC的周界上;下面證明:如果點H在菱形EFGC的周界上,則點H必定是符合條件的線段的中點.也分兩種情況進(jìn)行證明:(1)H在CG或CE上,過點H作PQ∥(或BD),而與BC及(或CD及BC)分別相交于P和Q,由相似的性質(zhì)可得:PH=QH,即H是PQ的中點,同時可證:BP=(或BQ=DP),因此P、Q符合題設(shè)條件(2)H在EF或FG上,不失一般性,設(shè)H在FG上,連接并延長,交平面AC于點T,顯然T在AC上,過T作TP∥CB于點P,則TP∥,在平面上,連接PH并延長,交于點Q,在三角形中,G是的中點,∥AC,則H是的中點,于是,從而有,又因為TP∥CB,,所以,從而,因此P,Q符合題設(shè)條件.由(1)(2),如果H是菱形EFGC周界上的任一點,則H必是符合題設(shè)條件的動線段PQ的中點,證畢.因為四邊形為菱形,其中,所以邊長為且,為等邊三角形,,所以面積.故答案為:【點睛】對于立體幾何軌跡問題,要畫出圖形,并要善于觀察,利用所學(xué)的立體幾何方面的知識,大膽猜測,小心驗證,對于多種情況的,要畫出相應(yīng)的圖形,注意分類討論.16、②③【解析】對①:由連接,,由平面,即可判斷;對③:設(shè)到平面的距離為,則,所以即可判斷;對④:以為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,設(shè),利用向量法求出與,比較大小即可判斷;對②:設(shè)與平面夾角為,利用向量法求出,即可求解判斷.【詳解】解:對①:連接,,在正方體中,由平面,可得,又,,所以平面,所以,故①錯誤;對③:設(shè)到平面的距離為,則,所以,故③正確;對④:以為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,設(shè),則,0,,,0,,,,,,,,所以,,,,,,設(shè)平面的法向量為,,,則,即,取,,,又,1,是平面的一個法向量,又二面角為銳二面角或直角,所以,,,又,,,故④錯誤對②:由④的解析知,,,,設(shè)平面的法向量為,則,即,取,則,設(shè)與平面夾角為,令,即,又,解得或,故②正確.故答案為:②③.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、答案不唯一,具體見解析【解析】選①:易得,法一:令求n,即可為何值時取最大值;法二:寫出,利用等差數(shù)列前n項和的函數(shù)性質(zhì)判斷為何值時有最大值;選②:由數(shù)列前n項和及等差數(shù)列下標(biāo)和的性質(zhì)易得、即可確定有最大值時值;選③:由等差數(shù)列前n項和公式易得、即可確定有最大值時值;【詳解】選①:設(shè)數(shù)列的公差為,,,解得,即,法一:當(dāng)時,有,得,∴當(dāng)時,;,;時,,∴或時,取最大值法二:,對稱軸,∴或時,取最大值選②:由,得,由等差中項的性質(zhì)有,即,由,得,∴,故,∴當(dāng)時,,時,,故時,取最大值選③:由,得,可得,由,得,可得,∴,故,∴當(dāng)時,,時,,故時,取最大值【點睛】關(guān)鍵點點睛:根據(jù)所選的條件,結(jié)合等差數(shù)列前n項和公式的性質(zhì)、下標(biāo)和相等的性質(zhì)等確定數(shù)列中項的正負(fù)性,找到界點n值即可.18、(1)(2)證明見解析【解析】(1)將點代入拋物線方程即可求解;(2)當(dāng)直線AB的斜率存在時,設(shè)直線AB的方程為,,將直線方程與拋物線方程聯(lián)立利用韋達(dá)定理即可求出的值;當(dāng)直線AB的斜率不存在時,由過點即可求出點和點的坐標(biāo),即可求出的值.【小問1詳解】將點代入得,,∴拋物線的標(biāo)準(zhǔn)方程為.【小問2詳解】當(dāng)直線AB斜率存在時,設(shè)直線AB的方程為,,將聯(lián)立得,,由韋達(dá)定理得:,,,當(dāng)直線AB的斜率不存在時,由直線過點,則,,,,綜上所述可知,為定值為.19、(1)(2)【解析】(1)由可知數(shù)列是公比為的等比數(shù)列,若選①:結(jié)合等差數(shù)列等差中項的性質(zhì)計算求解;若選②:利用等比數(shù)列等比中項的性質(zhì)計算求解,若選③:利用直接計算;(2)根據(jù)對數(shù)的運算,可知數(shù)列為等差數(shù)列,直接求和即可.【小問1詳解】由,當(dāng)時,,即,即,所以數(shù)列是公比為的等比數(shù)列,若選①:由,即,,所以數(shù)列的通項公式為;若選②:由,所以,所以數(shù)列的通項公式為;若選③:由,即,所以數(shù)列的通項公式為;【小問2詳解】由(1)得,所以數(shù)列為等差數(shù)列,所以.20、(1);(2).【解析】(1)根據(jù)條件列關(guān)于首項與公比的方程組,解得結(jié)果代入等比數(shù)列通項公式即可;(2)利用錯位相減法求和即可.【詳解】解析:(1)由題意可得:,∴∵,∴,∴數(shù)列的通項公式為.(2)∴上述兩式相減可得∴【點睛】本題考查等比數(shù)列通項公式、錯位相減法求和,考查基本分析求解能力,屬中檔題.21、(1),(2)【解析】(1)直接解不等式即可,(2)由題意可得,從而可得解不等式組可求得答案【小問1詳解】由,得,故由,得,故【小問2詳解】依題意得:,∴解得∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 造價課程考試題及答案
- 策略性營銷在農(nóng)業(yè)電商中的實際應(yīng)用試題及答案
- 從數(shù)據(jù)到洞察-基于區(qū)塊鏈的醫(yī)療分析研究
- 重癥心血管試題及答案
- 醫(yī)學(xué)倫理與法律在繼續(xù)教育中的重要性
- 美容皮膚考試題及答案
- 水泥行業(yè)考試題及答案
- 經(jīng)濟(jì)學(xué)基本概念試題及答案
- 韓語四六級試題及答案
- 美國奧賽試題詳解及答案
- 《電磁感應(yīng)原理解析》課件
- 成都輸液劑項目可行性研究報告參考范文
- 2025年二級注冊建筑師資格考試《建筑結(jié)構(gòu)、建筑物理與設(shè)備》真題卷(附答案)
- 鋰電池基礎(chǔ)知識培訓(xùn)課件
- 2025-2030城市燃?xì)猱a(chǎn)業(yè)行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 緊固件制造企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略研究報告
- 優(yōu)化醫(yī)患溝通提高腫瘤治療效果的途徑
- 2025北京九年級(上)期末語文匯編:文言文閱讀
- 越出站界調(diào)車RAILWAY課件
- 部隊物資儲備管理制度
- 河北武安招聘警務(wù)輔助人員筆試真題2024
評論
0/150
提交評論