版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省永豐初級中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在直角梯形中,,,,,點(diǎn)為上一點(diǎn),且,當(dāng)?shù)闹底畲髸r(shí),()A. B.2 C. D.2.已知橢圓:的左、右焦點(diǎn)分別為,,過的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.3.已知定義在上的函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.4.已知實(shí)數(shù)x,y滿足約束條件,若的最大值為2,則實(shí)數(shù)k的值為()A.1 B. C.2 D.5.已知是虛數(shù)單位,若,,則實(shí)數(shù)()A.或 B.-1或1 C.1 D.6.設(shè)雙曲線的右頂點(diǎn)為,右焦點(diǎn)為,過點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),則的面積為()A. B. C.5 D.67.設(shè)等差數(shù)列的前n項(xiàng)和為,且,,則()A.9 B.12 C. D.8.已知集合,,則為()A. B. C. D.9.若,則的值為()A. B. C. D.10.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.11.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個(gè)數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個(gè)正方形數(shù)陣就叫階幻方.定義為階幻方對角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.505012.若函數(shù)有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數(shù)為__________(用具體數(shù)據(jù)作答).14.設(shè),分別是定義在上的奇函數(shù)和偶函數(shù),且,則_________15.已知函數(shù),則________;滿足的的取值范圍為________.16.已知數(shù)列的前項(xiàng)和為,且滿足,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知公差不為零的等差數(shù)列的前n項(xiàng)和為,,是與的等比中項(xiàng).(1)求;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.18.(12分)已知函數(shù)的導(dǎo)函數(shù)的兩個(gè)零點(diǎn)為和.(1)求的單調(diào)區(qū)間;(2)若的極小值為,求在區(qū)間上的最大值.19.(12分)已知橢圓的短軸長為,左右焦點(diǎn)分別為,,點(diǎn)是橢圓上位于第一象限的任一點(diǎn),且當(dāng)時(shí),.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓上點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,過點(diǎn)作垂直于軸,垂足為,連接并延長交于另一點(diǎn),交軸于點(diǎn).(?。┣竺娣e最大值;(ⅱ)證明:直線與斜率之積為定值.20.(12分)已知函數(shù)f(x)=x-1+x+2,記f(x)(Ⅰ)解不等式f(x)≤5;(Ⅱ)若正實(shí)數(shù)a,b滿足1a+121.(12分)已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)已知函數(shù)的定義域?yàn)椋覞M足,當(dāng)時(shí),有,且.(1)求不等式的解集;(2)對任意,恒成立,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由題,可求出,所以,根據(jù)共線定理,設(shè),利用向量三角形法則求出,結(jié)合題給,得出,進(jìn)而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點(diǎn)在線段上,設(shè),則,即,又因?yàn)樗裕?,?dāng)時(shí),等號成立.所以.故選:B.【點(diǎn)睛】本題考查平面向量線性運(yùn)算中的加法運(yùn)算、向量共線定理,以及運(yùn)用二次函數(shù)求最值,考查轉(zhuǎn)化思想和解題能力.2、D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.3、D【解析】
先判斷函數(shù)在時(shí)的單調(diào)性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質(zhì)可以得到,比較三個(gè)數(shù)的大小,然后根據(jù)函數(shù)在時(shí)的單調(diào)性,比較出三個(gè)數(shù)的大小.【詳解】當(dāng)時(shí),,函數(shù)在時(shí),是增函數(shù).因?yàn)椋院瘮?shù)是奇函數(shù),所以有,因?yàn)?,函?shù)在時(shí),是增函數(shù),所以,故本題選D.【點(diǎn)睛】本題考查了利用函數(shù)的單調(diào)性判斷函數(shù)值大小問題,判斷出函數(shù)的奇偶性、單調(diào)性是解題的關(guān)鍵.4、B【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當(dāng)時(shí),x在點(diǎn)B處取得最大值,即,得;當(dāng)時(shí),z在點(diǎn)C處取得最大值,即,得(舍去).故選:B.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.5、B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題6、A【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程求出右頂點(diǎn)、右焦點(diǎn)的坐標(biāo),再求出過點(diǎn)與的一條漸近線的平行的直線方程,通過解方程組求出點(diǎn)的坐標(biāo),最后利用三角形的面積公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知中:,因此右頂點(diǎn)的坐標(biāo)為,右焦點(diǎn)的坐標(biāo)為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對稱性不妨設(shè)點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),所以直線的斜率為,因此直線方程為:,因此點(diǎn)的坐標(biāo)是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點(diǎn)睛】本題考查了雙曲線的漸近線方程的應(yīng)用,考查了兩直線平行的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.7、A【解析】
由,可得以及,而,代入即可得到答案.【詳解】設(shè)公差為d,則解得,所以.故選:A.【點(diǎn)睛】本題考查等差數(shù)列基本量的計(jì)算,考查學(xué)生運(yùn)算求解能力,是一道基礎(chǔ)題.8、C【解析】
分別求解出集合的具體范圍,由集合的交集運(yùn)算即可求得答案.【詳解】因?yàn)榧?,,所以故選:C【點(diǎn)睛】本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運(yùn)算,考查基本運(yùn)算能力.9、C【解析】
根據(jù),再根據(jù)二項(xiàng)式的通項(xiàng)公式進(jìn)行求解即可.【詳解】因?yàn)?,所以二?xiàng)式的展開式的通項(xiàng)公式為:,令,所以,因此有.故選:C【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了二項(xiàng)式展開式通項(xiàng)公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力10、B【解析】
根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當(dāng)時(shí),,無意義,故排除A;又,則,故排除D;對于C,當(dāng)時(shí),,所以不單調(diào),故排除C;故選:B【點(diǎn)睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎(chǔ)題.11、C【解析】
因?yàn)榛梅降拿啃小⒚苛?、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因?yàn)榛梅降拿啃?、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點(diǎn)睛】本題考查了數(shù)陣問題,考查了學(xué)生邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.12、D【解析】
推導(dǎo)出函數(shù)的圖象關(guān)于直線對稱,由題意得出,進(jìn)而可求得實(shí)數(shù)的值,并對的值進(jìn)行檢驗(yàn),即可得出結(jié)果.【詳解】,則,,,所以,函數(shù)的圖象關(guān)于直線對稱.若函數(shù)的零點(diǎn)不為,則該函數(shù)的零點(diǎn)必成對出現(xiàn),不合題意.所以,,即,解得或.①當(dāng)時(shí),令,得,作出函數(shù)與函數(shù)的圖象如下圖所示:此時(shí),函數(shù)與函數(shù)的圖象有三個(gè)交點(diǎn),不合乎題意;②當(dāng)時(shí),,,當(dāng)且僅當(dāng)時(shí),等號成立,則函數(shù)有且只有一個(gè)零點(diǎn).綜上所述,.故選:D.【點(diǎn)睛】本題考查利用函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù),考查函數(shù)圖象對稱性的應(yīng)用,解答的關(guān)鍵就是推導(dǎo)出,在求出參數(shù)后要對參數(shù)的值進(jìn)行檢驗(yàn),考查分析問題和解決問題的能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用二項(xiàng)展開式的通項(xiàng)公式可求的系數(shù).【詳解】的展開式的通項(xiàng)公式為,令,故,故的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開式中指定項(xiàng)的系數(shù),注意利用通項(xiàng)公式來計(jì)算,本題屬于容易題.14、1【解析】
令,結(jié)合函數(shù)的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數(shù)分別是上的奇函數(shù)和偶函數(shù),且,令,可得,所以.故答案為:1.【點(diǎn)睛】本題主要考查了函數(shù)奇偶性的應(yīng)用,其中解答中熟記函數(shù)的奇偶性,合理賦值求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15、【解析】
首先由分段函數(shù)的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因?yàn)?,所以,∵,∴?dāng)時(shí),滿足題意,∴;當(dāng)時(shí),由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.【點(diǎn)睛】本題考查分段函數(shù)的性質(zhì)的應(yīng)用,分類討論思想,屬于基礎(chǔ)題.16、【解析】
對題目所給等式進(jìn)行賦值,由此求得的表達(dá)式,判斷出數(shù)列是等比數(shù)列,由此求得的值.【詳解】解:,可得時(shí),,時(shí),,又,兩式相減可得,即,上式對也成立,可得數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列,可得.【點(diǎn)睛】本小題主要考查已知求,考查等比數(shù)列前項(xiàng)和公式,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)題意,建立首項(xiàng)和公差的方程組,通過基本量即可寫出前項(xiàng)和;(2)由(1)中所求,結(jié)合累加法求得.【詳解】(1)由題意可得即又因?yàn)?,所以,所?(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式和前項(xiàng)和的基本量的求解,涉及利用累加法求通項(xiàng)公式,屬綜合基礎(chǔ)題.18、(1)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(2)最大值是.【解析】
(1)求得,由題意可知和是函數(shù)的兩個(gè)零點(diǎn),根據(jù)函數(shù)的符號變化可得出的符號變化,進(jìn)而可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)由(1)中的結(jié)論知,函數(shù)的極小值為,進(jìn)而得出,解出、、的值,然后利用導(dǎo)數(shù)可求得函數(shù)在區(qū)間上的最大值.【詳解】(1),令,因?yàn)?,所以的零點(diǎn)就是的零點(diǎn),且與符號相同.又因?yàn)?,所以?dāng)時(shí),,即;當(dāng)或時(shí),,即.所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(2)由(1)知,是的極小值點(diǎn),所以有,解得,,,所以.因?yàn)楹瘮?shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和.所以為函數(shù)的極大值,故在區(qū)間上的最大值取和中的最大者,而,所以函數(shù)在區(qū)間上的最大值是.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間與最值,考查計(jì)算能力,屬于中等題.19、(1);(2)(?。唬áⅲ┳C明見解析.【解析】
(1)由,解方程組即可得到答案;(2)(?。┰O(shè),,則,,易得,注意到,利用基本不等式得到的最大值即可得到答案;(ⅱ)設(shè)直線斜率為,直線方程為,聯(lián)立橢圓方程得到的坐標(biāo),再利用兩點(diǎn)的斜率公式計(jì)算即可.【詳解】(1)設(shè),由,得.將代入,得,即,由,解得,所以橢圓的標(biāo)準(zhǔn)方程為.(2)設(shè),,則,(ⅰ)易知為的中位線,所以,所以,又滿足,所以,得,故,當(dāng)且僅當(dāng),即,時(shí)取等號,所以面積最大值為.(ⅱ)記直線斜率為,則直線斜率為,所以直線方程為.由,得,由韋達(dá)定理得,所以,代入直線方程,得,于是,直線斜率,所以直線與斜率之積為定值.【點(diǎn)睛】本題考查直線與橢圓的位置關(guān)系,涉及到橢圓中的最值及定值問題,在解橢圓與直線的位置關(guān)系的答題時(shí),一般會(huì)用到根與系數(shù)的關(guān)系,考查學(xué)生的數(shù)學(xué)運(yùn)算求解能力,是一道有一定難度的題.20、(Ⅰ){x|-3≤x≤2}(Ⅱ)見證明【解析】
(Ⅰ)由題意結(jié)合不等式的性質(zhì)零點(diǎn)分段求解不等式的解集即可;(Ⅱ)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(Ⅰ)①當(dāng)x>1時(shí),f(x)=(x-1)+(x+2)=2x+1≤5,即x≤2,∴1<x≤2;②當(dāng)-2≤x≤1時(shí),f(x)=(1-x)+(x+2)=3≤5,∴-2≤x≤1;③當(dāng)x<-2時(shí),f(x)=(1-x)-(x+2)=-2x-1≤5,即x≥-3,∴-3≤x<-2.綜上所述,原不等式的解集為{x|-3≤x≤2}.(Ⅱ)∵f(x)=x-1當(dāng)且僅當(dāng)-2≤x≤1時(shí),等號成立.∴f(x)的最小值m=3.∴[(即2a當(dāng)且僅當(dāng)2a×1又1a+1b=∴2a【點(diǎn)睛】本題主要考查絕對值不等式的解法,柯西不等式及其應(yīng)用,絕對值三角不等式求最值的方法等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.21、(1),;(2)【解析】試題分析:(1)利用等差數(shù)列,等比數(shù)列的通項(xiàng)公式先求得公差和公比,即得到結(jié)論;(2)利用分組求和法,由等差數(shù)列及等比數(shù)列的前n項(xiàng)和公式即可求得數(shù)列前n項(xiàng)和.試題解析:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設(shè)等比數(shù)列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵數(shù)列{1n}的前n項(xiàng)和為n(n+1),數(shù)列{2n﹣1}的前n項(xiàng)和為1×=2n﹣1,∴數(shù)列{bn}的前n項(xiàng)和為;考點(diǎn):1.等差數(shù)列性質(zhì)的綜合應(yīng)用;2.等比數(shù)列性質(zhì)的綜合應(yīng)用;1.數(shù)列求和.22、(1);(2).【解析】
(1)利用定義法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年水泥熟料供應(yīng)協(xié)議模板
- 2024年度全國連鎖品牌二零二四年度銷售團(tuán)隊(duì)招聘合同范本3篇
- 幼兒園大班美術(shù)活動(dòng)《樹葉拼貼畫》教案
- 班級網(wǎng)站的課程設(shè)計(jì)
- 2024年海外游學(xué)活動(dòng)參與合同版B版
- 2024年度智能安防設(shè)備采購、安裝與監(jiān)控合同2篇
- 2024-2025學(xué)年人教部編版四年級上語文寒假作業(yè)(十一)
- 2024年環(huán)保型土地平整工程服務(wù)合同3篇
- 泵殼工藝設(shè)計(jì)課程設(shè)計(jì)
- 2024-2025學(xué)年人教新版九年級(上)化學(xué)寒假作業(yè)(一)
- 2023年聊城市人民醫(yī)院招聘備案制工作人員筆試真題
- 輔導(dǎo)員年度述職報(bào)告
- 收費(fèi)站微笑服務(wù)培訓(xùn)
- GB/T 44570-2024塑料制品聚碳酸酯板材
- 雨的形成課件教學(xué)課件
- 七年級歷史試卷上冊可打印
- GB/T 16288-2024塑料制品的標(biāo)志
- 關(guān)于健康的課件圖片
- 2024-2030年農(nóng)產(chǎn)品物流行業(yè)市場深度分析及競爭格局與投資價(jià)值研究報(bào)告
- 云計(jì)算體系結(jié)構(gòu)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 油浸變壓器排油注氮消防系統(tǒng)設(shè)計(jì)、施工及驗(yàn)收規(guī)范
評論
0/150
提交評論