安徽省滁州市定遠縣英華中學2025屆高二數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第1頁
安徽省滁州市定遠縣英華中學2025屆高二數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第2頁
安徽省滁州市定遠縣英華中學2025屆高二數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第3頁
安徽省滁州市定遠縣英華中學2025屆高二數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第4頁
安徽省滁州市定遠縣英華中學2025屆高二數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省滁州市定遠縣英華中學2025屆高二數(shù)學第一學期期末教學質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列有關(guān)命題的表述中,正確的是()A.命題“若是偶數(shù),則,都是偶數(shù)”的否命題是假命題B.命題“若為正無理數(shù),則也是無理數(shù)”的逆命題是真命題C.命題“若,則”的逆否命題為“若,則”D.若命題“”,“”均為假命題,則,均為假命題2.2021年是中國共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國共產(chǎn)黨成立100周年慶?;顒訕俗R(如圖1).其中“100”的兩個“0”設計為兩個半徑為R的相交大圓,分別內(nèi)含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切(如圖2).已知,則由其中一個圓心向另一個小圓引的切線長與兩大圓的公共弦長之比為()A. B.3C. D.3.在棱長為1的正方體中,點,分別是,的中點,點是棱上的點且滿足,則兩異面直線,所成角的余弦值是()A. B.C. D.4.已知,則的最小值是()A.3 B.8C.12 D.205.已知A,B,C,D是同一球面上的四個點,其中是正三角形,平面,,則該球的表面積為()A. B.C. D.6.下圖是一個“雙曲狹縫”模型,直桿沿著與它不平行也不相交的軸旋轉(zhuǎn)時形成雙曲面,雙曲面的邊緣為雙曲線.已知該模型左、右兩側(cè)的兩段曲線(曲線AB與曲線CD)所在的雙曲線離心率為2,曲線AB與曲線CD中間最窄處間的距離為10cm,點A與點C,點B與點D均關(guān)于該雙曲線的對稱中心對稱,且|AB|=30cm,則|AD|=()A.10cm B.20cmC.25cm D.30cm7.已知橢圓C:的左右焦點為F1,F(xiàn)2,離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為()A. B.C. D.8.已知圓:,點,則點到圓上點的最小距離為()A.1 B.2C. D.9.為了了解1200名學生對學校某項教改實驗的意見,打算從中抽取一個容量為40的樣本,采用系統(tǒng)抽樣方法,則分段的間隔為()A.40 B.30C.20 D.1210.若雙曲線的漸近線方程為,則的值為()A.2 B.3C.4 D.611.在數(shù)列中,,則()A.2 B.C. D.12.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若經(jīng)過點且斜率為1的直線與拋物線交于,兩點,則______.14.在平面直角坐標系中,直線與橢圓交于兩點,且,則該橢圓的離心率為__________.15.已知直線和互相平行,則實數(shù)的值為___________.16.“五經(jīng)”是《詩經(jīng)》、《尚書》、《禮記》、《周易》、《春秋》的合稱,貴為中國文化經(jīng)典著作,所載內(nèi)容及哲學思想至今仍具有積極意義和參考價值.某校計劃開展“五經(jīng)”經(jīng)典誦讀比賽活動,某班有、兩位同學參賽,比賽時每位同學從這本書中隨機抽取本選擇其中的內(nèi)容誦讀,則、兩位同學抽到同一本書的概率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,,.(1)證明:平面;(2)在線段上是否存在一點,使直線與平面所成角的正弦值等于?18.(12分)在如圖所示的幾何體中,四邊形是平行四邊形,,,,四邊形是矩形,且平面平面,,點是線段上的動點(1)證明:;(2)設平面與平面的夾角為,求的最小值19.(12分)已知拋物線:上的點到焦點的距離為(1)求拋物線的方程;(2)設縱截距為的直線與拋物線交于,兩個不同的點,若,求直線的方程20.(12分)我們知道,裝同樣體積的液體容器中,如果容器的高度一樣,那么側(cè)面所需的材料就以圓柱形的容器最省.所以汽油桶等裝液體的容器大都是圓柱形的,某臥式油罐如圖1所示,它垂直于軸的截面如圖2所示,已知截面圓的半徑是1米,弧的長為米表示劣弧與弦所圍成陰影部分的面積.(1)請寫出函數(shù)表達式;(2)用求導的方法證明.21.(12分)(1)求焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程;(2)求經(jīng)過點的拋物線的標準方程;22.(10分)新冠肺炎疫情發(fā)生以來,我國某科研機構(gòu)開展應急科研攻關(guān),研制了一種新型冠狀病毒疫苗,并已進入二期臨床試驗.根據(jù)普遍規(guī)律,志愿者接種疫苗后體內(nèi)會產(chǎn)生抗體,人體中檢測到抗體,說明有抵御病毒的能力.通過檢測,用表示注射疫苗后的天數(shù),表示人體中抗體含量水平(單位:,即:百萬國際單位/毫升),現(xiàn)測得某志愿者的相關(guān)數(shù)據(jù)如下表所示:天數(shù)123456抗體含量水平510265096195根據(jù)以上數(shù)據(jù),繪制了散點圖.(1)根據(jù)散點圖判斷,與(a,b,c,d均為大于0的實數(shù))哪一個更適宜作為描述y與x關(guān)系的回歸方程類型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結(jié)果求出y關(guān)于x的回歸方程,并預測該志愿者在注射疫苗后的第10天的抗體含量水平值;(3)從這位志愿者前6天的檢測數(shù)據(jù)中隨機抽取4天的數(shù)據(jù)作進一步的分析,記其中的y值大于50的天數(shù)為X,求X的分布列與數(shù)學期望.參考數(shù)據(jù):3.5063.673.4917.509.4912.95519.014023.87其中.參考公式:用最小二乘法求經(jīng)過點,,,,的線性回歸方程的系數(shù)公式,;.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】對于選項A:根據(jù)偶數(shù)性質(zhì)即可判斷;對于選項B:通過舉例即可判斷,對于選項C:利用逆否命題的概念即可判斷;對于選項D:根據(jù)且、或和非的關(guān)系即可判斷.【詳解】選項A:原命題的否命題為:若不是偶數(shù),則,不都是偶數(shù),若,都是偶數(shù),則一定是偶數(shù),從而原命題的否命題為真命題,故A錯誤;選項B:原命題的逆命題:若是無理數(shù),則也為正無理數(shù),當,即為無理數(shù),但是有理數(shù),故B錯誤;選項C:由逆否命題的概念可知,C正確;選項D:由為假命題可知,,至少有一個為假命題,由為假命題可知,和均為假命題,故為假命題,為真命題,故D錯誤.故選:C.2、C【解析】作出圖形,進而根據(jù)勾股定理并結(jié)合圓與圓的位置關(guān)系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.3、A【解析】建立空間直角坐標系,寫出點、、、和向量的、坐標,運用求異面直線余弦值的公式即可求出.【詳解】解:以為原點,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標第,則,,,,故,,,故兩異面直線,所成角的余弦值是.故選:A.【點睛】本題考查求異面直線所成角的余弦值,屬于中檔題.4、A【解析】利用基本不等式進行求解即可.【詳解】因為,所以,當且僅當時取等號,即當時取等號,故選:A5、C【解析】由題意畫出幾何體的圖形,把、、、擴展為三棱柱,上下底面中心連線的中點與的距離為球的半徑,由此能求出球的表面積【詳解】把、、、擴展為三棱柱,上下底面中心連線的中點與的距離為球的半徑,,,是正三角形,,,球的表面積為故選:C6、B【解析】由離心率求出雙曲線方程,由對稱性設出點A,B,D坐標,求出坐標,求出答案.【詳解】由題意得:,解得:,因為離心率,所以,,故雙曲線方程為,設,則,,則,所以,則,解得:,故.故選:B7、A【解析】根據(jù)橢圓的定義可得△AF1B的周長為4a,由題意求出a,結(jié)合離心率計算即可求出c,再求出b即可.【詳解】由橢圓的定義知,△AF1B的周長為,又△AF1B的周長為4,則,,,,,所以方程為,故選:A.8、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點到圓上點的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點到圓上點的最小距離為.故選:C.9、B【解析】根據(jù)系統(tǒng)抽樣的概念,以及抽樣距的求法,可得結(jié)果.【詳解】由總數(shù)為1200,樣本容量為40,所以抽樣距為:故選:B【點睛】本題考查系統(tǒng)抽樣的概念,屬基礎題.10、A【解析】根據(jù)雙曲線方程確定焦點位置,再根據(jù)漸近線方程為求解.【詳解】因為雙曲線所以焦點在x軸上,又因為漸近線方程為,所以,所以.故選:A【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了理解辨析的能力,屬于基礎題.11、D【解析】根據(jù)遞推關(guān)系,代入數(shù)據(jù),逐步計算,即可得答案.【詳解】由題意得,令,可得,令,可得,令,可得,令,可得.故選:D12、C【解析】按照程序框圖的流程進行計算.【詳解】,故輸出S的值為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意寫出直線的方程與拋物線方程聯(lián)立,得出韋達定理,由弦長公式可得答案.【詳解】設,則直線的方程為由,得所以所以故答案為:14、【解析】直線與橢圓相交,求交點,利用列式求解即可.【詳解】聯(lián)立方程得,因為,所以,即,所以,.故答案為:.15、【解析】根據(jù)直線平行的充要條件即可求出實數(shù)的值.詳解】由直線和互相平行,得,即.故答案為:.16、##【解析】計算出、兩位同學各隨機抽出一本書的結(jié)果種數(shù),以及、兩位同學抽到同一本書的結(jié)果種數(shù),利用古典概型的概率公式可求得所求事件的概率.【詳解】、兩位同學抽到的結(jié)果都有種,由分步乘法計數(shù)原理可知,、兩位同學各隨機抽出一本書,共有種結(jié)果,而、兩位同學抽到同一本書的結(jié)果有種,故所求概率為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳解解析;(2)存在.【解析】(1)利用勾股定理證得,結(jié)合線面垂直的判定定理即可證得結(jié)論;(2)以A為原點建立空間直角坐標系,設點,,求得平面的法向量,利用已知條件建立關(guān)于的方程,進而得解.【小問1詳解】取中點為,連接,在中,,,,又,,所以,又,,而,所以,又,,,又,,平面.【小問2詳解】以A為坐標原點,以為x軸,為y軸,為z軸建立空間直角坐標系,則,,,,設點,因為點F在線段上,設,,,設平面的法向量為,,,則,令,則,設直線CF與平面所成角為,,解得或(舍去),,此時點F是的三等分點,所以在線段上是存在一點,使直線與平面所成角的正弦值等于.18、(1)證明見解析;(2).【解析】(1)要證,只需證平面,只需證(由勾股定理可證),,只需證平面,只需證(由平面平面可證),(由可證),即可證明結(jié)論.(2)以為原點,所在直線分別為x軸,y軸,z軸,建立空間直角坐標系寫出點與點的坐標由于軸,可設,可得出與的坐標設為平面的法向量,求出法向量.是關(guān)于的一個式子,求出的取值范圍,即可求出的最小值【小問1詳解】在中,,,,所以,所以所以是等腰直角三角形,即因為,所以又因為平面平面,平面平面,,所以平面又平面,所以又因為,EC,平面所以平面又平面,所以,所以在中,,,所以所以又因為,,所以,所以又,,平面所以平面又平面,所以【小問2詳解】以為原點,所在直線分別為x軸,y軸,z軸,建立如圖所示的空間直角坐標系則,因為軸,可設,可求得,設為平面的法向量則令,解得,所以又因為是平面的法向量所以,因為,所以所以當時,取到最小值19、(1);(2)【解析】(1)利用拋物線的性質(zhì)即可求解.(2)設直線方程,與拋物線聯(lián)立,利用韋達定理,即可求解.【詳解】(1)由題設知,拋物線的準線方程為,由點到焦點的距離為,得,解得,所以拋物線的標準方程為(2)設,,顯然直線的斜率存在,故設直線的方程為,聯(lián)立消去得,由得,即所以,又因為,,所以,所以,即,解得,滿足,所以直線的方程為20、(1),(2)證明見解析【解析】(1)由弧長公式得,根據(jù)即可求解;(2)利用導數(shù)判斷出在上單調(diào)遞增,即可證明.【小問1詳解】由弧長公式得,于是,【小問2詳解】cos,顯然在上單調(diào)遞增,于是.21、(1);(2)或.【解析】(1)由虛軸長是12求出半虛軸b,根據(jù)雙曲線的性質(zhì)c2=a2+b2以及離心率,求出a2,寫出雙曲線的標準方程;(2)設出拋物線方程,利用經(jīng)過,求出拋物線中的參數(shù),即可得到拋物線方程【詳解】焦點在x軸上,設所求雙曲線的方程為=1(a>0,b>0)由題意,得解得b=6,解得,所以焦點在x軸上的雙曲線的方程為(2)由于點P在第三象限,所以拋物線方程可設為:或(p>0)當方程為,將點代入得16=4p,即p=4,拋物線方程為:;當方程為,將點代入得4=8p,即p=,拋物線方程為:;22、(1)(2),4023.87(3)分布列答案見解析,數(shù)學期望:【解析】(1)由于這些點分布在一條曲線的附近,從而可選出回歸方程,(2)設,,則建立w關(guān)于x的回歸方程,然后根據(jù)公式和表中的數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論