2025屆山東聊城市高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
2025屆山東聊城市高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
2025屆山東聊城市高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
2025屆山東聊城市高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
2025屆山東聊城市高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆山東聊城市高三數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.2.集合,則()A. B. C. D.3.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.84.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實數(shù)根,則實數(shù)k的取值范圍()A. B. C. D.5.已知函數(shù)是上的偶函數(shù),且當時,函數(shù)是單調(diào)遞減函數(shù),則,,的大小關(guān)系是()A. B.C. D.6.已知函數(shù)(表示不超過x的最大整數(shù)),若有且僅有3個零點,則實數(shù)a的取值范圍是()A. B. C. D.7.設(shè)復(fù)數(shù)滿足,則在復(fù)平面內(nèi)的對應(yīng)點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.設(shè),則(

)A.10 B.11 C.12 D.139.各項都是正數(shù)的等比數(shù)列的公比,且成等差數(shù)列,則的值為()A. B.C. D.或10.如下的程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.1511.已知全集,集合,,則陰影部分表示的集合是()A. B. C. D.12.已知函數(shù)若關(guān)于的方程有六個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知變量(m>0),且,若恒成立,則m的最大值________.14.設(shè)第一象限內(nèi)的點(x,y)滿足約束條件,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為40,則+的最小值為_____.15.已知圓柱的上下底面的中心分別為,過直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為____16.已知,則展開式中的系數(shù)為__三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系.(1)設(shè)直線l的極坐標方程為,若直線l與曲線C交于兩點A.B,求AB的長;(2)設(shè)M、N是曲線C上的兩點,若,求面積的最大值.18.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.19.(12分)在平面直角坐標系中,已知拋物線的焦點為,準線為,是拋物線上上一點,且點的橫坐標為,.(1)求拋物線的方程;(2)過點的直線與拋物線交于、兩點,過點且與直線垂直的直線與準線交于點,設(shè)的中點為,若、、四點共圓,求直線的方程.20.(12分)已知.(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若不等式恒成立,求實數(shù)的取值范圍.21.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.22.(10分)根據(jù)國家統(tǒng)計局數(shù)據(jù),1978年至2018年我國GDP總量從0.37萬億元躍升至90萬億元,實際增長了242倍多,綜合國力大幅提升.將年份1978,1988,1998,2008,2018分別用1,2,3,4,5代替,并表示為;表示全國GDP總量,表中,.326.4741.90310209.7614.05(1)根據(jù)數(shù)據(jù)及統(tǒng)計圖表,判斷與(其中為自然對數(shù)的底數(shù))哪一個更適宜作為全國GDP總量關(guān)于的回歸方程類型?(給出判斷即可,不必說明理由),并求出關(guān)于的回歸方程.(2)使用參考數(shù)據(jù),估計2020年的全國GDP總量.線性回歸方程中斜率和截距的最小二乘法估計公式分別為:,.參考數(shù)據(jù):45678的近似值5514840310972981

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

利用是偶函數(shù)化簡,結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.2、D【解析】

利用交集的定義直接計算即可.【詳解】,故,故選:D.【點睛】本題考查集合的交運算,注意常見集合的符號表示,本題屬于基礎(chǔ)題.3、A【解析】

由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵.4、D【解析】

做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個交點,而函數(shù)在上有3個交點,則在上有4個不同的交點,數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實數(shù)根,則在上有4個不同的實數(shù)根,當直線經(jīng)過時,;當直線經(jīng)過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數(shù)根.故選:D.【點睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點和方程之間的關(guān)系轉(zhuǎn)化為兩個函數(shù)的交點是解題的關(guān)鍵,運用數(shù)形結(jié)合是解決函數(shù)零點問題的基本思想,屬于中檔題.5、D【解析】

利用對數(shù)函數(shù)的單調(diào)性可得,再根據(jù)的單調(diào)性和奇偶性可得正確的選項.【詳解】因為,,故.又,故.因為當時,函數(shù)是單調(diào)遞減函數(shù),所以.因為為偶函數(shù),故,所以.故選:D.【點睛】本題考查抽象函數(shù)的奇偶性、單調(diào)性以及對數(shù)函數(shù)的單調(diào)性在大小比較中的應(yīng)用,比較大小時注意選擇合適的中間數(shù)來傳遞不等關(guān)系,本題屬于中檔題.6、A【解析】

根據(jù)[x]的定義先作出函數(shù)f(x)的圖象,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為f(x)與g(x)=ax有三個不同的交點,利用數(shù)形結(jié)合進行求解即可.【詳解】當時,,當時,,當時,,當時,,若有且僅有3個零點,則等價為有且僅有3個根,即與有三個不同的交點,作出函數(shù)和的圖象如圖,當a=1時,與有無數(shù)多個交點,當直線經(jīng)過點時,即,時,與有兩個交點,當直線經(jīng)過點時,即時,與有三個交點,要使與有三個不同的交點,則直線處在過和之間,即,故選:A.【點睛】利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)的范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域(最值)問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.7、C【解析】

化簡得到,得到答案.【詳解】,故,對應(yīng)點在第三象限.故選:.【點睛】本題考查了復(fù)數(shù)的化簡和對應(yīng)象限,意在考查學(xué)生的計算能力.8、B【解析】

根據(jù)題中給出的分段函數(shù),只要將問題轉(zhuǎn)化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題.9、C【解析】分析:解決該題的關(guān)鍵是求得等比數(shù)列的公比,利用題中所給的條件,建立項之間的關(guān)系,從而得到公比所滿足的等量關(guān)系式,解方程即可得結(jié)果.詳解:根據(jù)題意有,即,因為數(shù)列各項都是正數(shù),所以,而,故選C.點睛:該題應(yīng)用題的條件可以求得等比數(shù)列的公比,而待求量就是,代入即可得結(jié)果.10、A【解析】

根據(jù)題意可知最后計算的結(jié)果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計算的結(jié)果為的最大公約數(shù),按流程圖計算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點睛】本題考查的是利用更相減損術(shù)求兩個數(shù)的最大公約數(shù),難度較易.11、D【解析】

先求出集合N的補集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,,可得或,又所以.故選:D.【點睛】本題考查了韋恩圖表示集合,集合的交集和補集的運算,屬于基礎(chǔ)題.12、B【解析】

令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關(guān)于的方程有六個不相等的實數(shù)根,則有兩個不同的根,設(shè)由根的分布可知,,解得.故選:B.【點睛】本題考查復(fù)合方程根的個數(shù)問題,涉及到一元二次方程根的分布,考查學(xué)生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

在不等式兩邊同時取對數(shù),然后構(gòu)造函數(shù)f(x)=,求函數(shù)的導(dǎo)數(shù),研究函數(shù)的單調(diào)性即可得到結(jié)論.【詳解】不等式兩邊同時取對數(shù)得,即x2lnx1<x1lnx2,又即成立,設(shè)f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數(shù)f(x)在(0,m)上為增函數(shù),函數(shù)的導(dǎo)數(shù),由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數(shù)f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e【點睛】本題考查函數(shù)單調(diào)性與導(dǎo)數(shù)之間的應(yīng)用,根據(jù)條件利用取對數(shù)得到不等式,從而可構(gòu)造新函數(shù),是解決本題的關(guān)鍵14、【解析】不等式表示的平面區(qū)域陰影部分,當直線ax+by=z(a>0,b>0)過直線x?y+2=0與直線2x?y?6=0的交點(8,10)時,目標函數(shù)z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而當且僅當時取等號,則的最小值為.15、【解析】

由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【詳解】解:因為軸截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【點睛】考查圓柱的軸截面和其體積的求法,是基礎(chǔ)題.16、1.【解析】

由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計算公式,求出展開式中的系數(shù).【詳解】∵已知,則,

它表示4個因式的乘積.

故其中有2個因式取,一個因式取,剩下的一個因式取1,可得的項.

故展開式中的系數(shù).

故答案為:1.【點睛】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計算公式,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)1.【解析】

(1)利用參數(shù)方程、普通方程、極坐標方程間的互化公式即可;(2),,由(1)通過計算得到,即最大值為1.【詳解】(1)將曲線C的參數(shù)方程化為普通方程為,即;再將,,代入上式,得,故曲線C的極坐標方程為,顯然直線l與曲線C相交的兩點中,必有一個為原點O,不妨設(shè)O與A重合,即.(2)不妨設(shè),,則面積為當,即取時,.【點睛】本題考查參數(shù)方程、普通方程、極坐標方程間的互化,三角形面積的最值問題,是一道容易題.18、(1);(2)證明見解析【解析】

(1)將函數(shù)整理為分段函數(shù)形式可得,進而分類討論求解不等式即可;(2)先利用絕對值不等式的性質(zhì)得到的最大值為3,再利用均值定理證明即可.【詳解】(1)①當時,恒成立,;②當時,,即,;③當時,顯然不成立,不合題意;綜上所述,不等式的解集為.(2)由(1)知,于是由基本不等式可得(當且僅當時取等號)(當且僅當時取等號)(當且僅當時取等號)上述三式相加可得(當且僅當時取等號),,故得證.【點睛】本題考查解絕對值不等式和利用均值定理證明不等式,考查絕對值不等式的最值的應(yīng)用,解題關(guān)鍵是掌握分類討論解決帶絕對值不等式的方法,考查了分析能力和計算能力,屬于中檔題.19、(1)(2)【解析】

(1)由拋物線的定義可得,即可求出,從而得到拋物線方程;(2)設(shè)直線的方程為,代入,得.設(shè),,列出韋達定理,表示出中點的坐標,若、、、四點共圓,再結(jié)合,得,則即可求出參數(shù),從而得解;【詳解】解:(1)由拋物線定義,得,解得,所以拋物線的方程為.(2)設(shè)直線的方程為,代入,得.設(shè),,則,.由,,得,所以.因為直線的斜率為,所以直線的斜率為,則直線的方程為.由解得.若、、、四點共圓,再結(jié)合,得,則,解得,所以直線的方程為.【點睛】本題考查拋物線的定義及性質(zhì)的應(yīng)用,直線與拋物線綜合問題,屬于中檔題.20、(1)答案不唯一,具體見解析(2)【解析】

(1)分類討論,利用導(dǎo)數(shù)的正負,可得函數(shù)的單調(diào)區(qū)間.(2)分離出參數(shù)后,轉(zhuǎn)化為函數(shù)的最值問題解決,注意函數(shù)定義域.【詳解】(1)由得或①當時,由,得.由,得或此時的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.②當時,由,得由,得或此時的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和綜上:當時,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和當時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.(2)依題意,不等式恒成立等價于在上恒成立,可得,在上恒成立,設(shè),則令,得,(舍)當時,;當時,當變化時,,變化情況如下表:10單調(diào)遞增單調(diào)遞減∴當時,取得最大值,,∴.∴的取值范圍是.【點睛】本題主要考查了利用導(dǎo)數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論