




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
天津市天津一中2025屆高二數(shù)學(xué)第一學(xué)期期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的圖象如圖所示,則下列大小關(guān)系正確的是()A.B.C.D.2.在各項均為正數(shù)等比數(shù)列中,若成等差數(shù)列,則=()A. B.C. D.3.設(shè),,,則下列不等式中一定成立的是()A. B.C. D.4.已知的周長等于10,,通過建立適當?shù)钠矫嬷苯亲鴺讼?,頂點的軌跡方程可以是()A. B.C. D.5.已知數(shù)列的通項公式為,是數(shù)列的最小項,則實數(shù)的取值范圍是()A. B.C. D.6.過點,且斜率為2的直線方程是A. B.C. D.7.在一次體檢中,發(fā)現(xiàn)甲、乙兩個單位的職工中體重超過的人員的體重如下(單位:).若規(guī)定超過為顯著超重,從甲、乙兩個單位中體重超過的職工中各抽取1人,則這2人中,恰好有1人顯著超重的概率為()A. B.C. D.8.已知直線,兩個不同的平面,下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則9.已知數(shù)列的前n項和為,,,則=()A. B.C. D.10.若正實數(shù)、滿足,且不等式有解,則實數(shù)取值范圍是()A.或 B.或C. D.11.已知拋物線的焦點為F,點P為該拋物線上的動點,若,則當最大時,()A. B.1C. D.212.已知向量與向量垂直,則實數(shù)x的值為()A.﹣1 B.1C.﹣6 D.6二、填空題:本題共4小題,每小題5分,共20分。13.半徑為的球的表面積為_______14.已知點,,,則外接圓的圓心坐標為________15.數(shù)列的前項和為,則_________________.16.若“x2-2x-8>0”是“x<m”的必要不充分條件,則m最大值為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:()的左、右焦點分別為,焦距為,過點作直線交橢圓于兩點,的周長為.(1)求橢圓的方程;(2)若斜率為的直線與橢圓相交于兩點,求定點與交點所構(gòu)成的三角形面積的最大值.18.(12分)已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要條件,求m的取值范圍19.(12分)已知中,內(nèi)角的對邊分別為,且滿足.(1)求的值;(2)若,求面積的最大值.20.(12分)已知如圖①,在菱形ABCD中,且,為AD的中點,將沿BE折起使,得到如圖②所示的四棱錐,在四棱錐中,求解下列問題:(1)求證:BC平面ABE;(2)若P為AC中點,求二面角的余弦值.21.(12分)已知拋物線的焦點為,點在第一象限且為拋物線上一點,點在點右側(cè),且△恰為等邊三角形(1)求拋物線的方程;(2)若直線與交于兩點,向量的夾角為(其中為坐標原點),求實數(shù)的取值范圍.22.(10分)已知函數(shù).(1)當時,求的極值;(2)當時,,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)導(dǎo)數(shù)的幾何意義可得答案.【詳解】因為函數(shù)在某點處的導(dǎo)數(shù)值表示的是此點處切線的斜率,所以由圖可得,故選:C2、A【解析】利用等差中項的定義以及等比數(shù)列的通項公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,∵成等差數(shù)列,∴,即,解得或(舍去),∴,故選:.3、B【解析】利用特殊值法可判斷ACD的正誤,根據(jù)不等式的性質(zhì),可判斷B的正誤.【詳解】對于A中,令,,,,滿足,,但,故A錯誤;對于B中,因為,所以由不等式的可加性,可得,所以,故B正確;對于C中,令,,,,滿足,,但,故C錯誤;對于D中,令,,,,滿足,,但,故D錯誤故選:B4、A【解析】根據(jù)橢圓的定義進行求解即可.【詳解】因為的周長等于10,,所以,因此點的軌跡是以為焦點的橢圓,且不在直線上,因此有,所以頂點的軌跡方程可以是,故選:A5、D【解析】利用最值的含義轉(zhuǎn)化為不等式恒成立問題解決即可【詳解】解:由題意可得,整理得,當時,不等式化簡為恒成立,所以,當時,不等式化簡為恒成立,所以,綜上,,所以實數(shù)的取值范圍是,故選:D6、A【解析】由直線點斜式計算出直線方程.【詳解】因為直線過點,且斜率為2,所以該直線方程為,即.故選【點睛】本題考查了求直線方程,由題意已知點坐標和斜率,故選用點斜式即可求出答案,較為簡單.7、B【解析】列舉出所有選取的情況,再找出滿足題意的情況,根據(jù)古典概型的概率計算公式即可求解.【詳解】不妨用表示每種抽取情況,其中是指甲單位抽取1人的體重,代表從乙單位抽取人的體重.則所有的可能有16種,如下所示:,,,,,,,,,,,,,,,其中滿足題意的有6種:,,,,,故抽取的這2人中,恰好有1人顯著超重的概率為:.故選:.8、A【解析】根據(jù)線面、面面位置關(guān)系有關(guān)知識對選項逐一分析,由此確定正確選項.【詳解】對于A選項,根據(jù)面面垂直的判定定理可知,A選項正確,對于B選項,當,時,和可能相交,B選項錯誤,對于C選項,當,時,可能含于,C選項錯誤,對于D選項,當,時,可能含于,D選項錯誤.故選:A9、D【解析】利用公式計算得到,得到答案【詳解】由已知得,即,而,所以故選:D10、A【解析】將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,可得出關(guān)于實數(shù)的不等式,解之即可.【詳解】因為正實數(shù)、滿足,則,即,所以,,當且僅當時,即當時,等號成立,即的最小值為,因為不等式有解,則,即,即,解得或.故選:A.II卷11、B【解析】根據(jù)拋物線的定義,結(jié)合換元法、配方法進行求解即可.【詳解】因為點P為該拋物線上的動點,所以點P的坐標設(shè)為,拋物線的焦點為F,所以,拋物線的準線方程為:,因此,令,,當時,即當時,有最大值,最大值為1,此時.故選:B12、B【解析】根據(jù)數(shù)量積的坐標計算公式代入可得的值【詳解】解:向量,與向量垂直,則,由數(shù)量積的坐標公式可得:,解得,故選:【點睛】本題考查空間向量的坐標運算,以及數(shù)量積的坐標公式,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】由球的表面積公式計算【詳解】由題意.故答案為:14、【解析】求得的垂直平分線的方程,在求得垂直平分線的交點,則問題得解.【詳解】線段中點坐標為,線段斜率為,所以線段垂直平分線的斜率為,故線段的垂直平分線方程為,即.線段中點坐標為,線段斜率為,所以線段垂直平分線的斜率為,故線段的垂直平分線方程為,即.由.所以外接圓的圓心坐標為.故答案為:.【點睛】本題考查直線方程的求解,直線交點坐標的求解,屬綜合基礎(chǔ)題.15、【解析】利用計算可得出數(shù)列的通項公式.【詳解】當時,;而不適合上式,.故答案:.16、【解析】解不等式,得到或,,根據(jù)必要不充分條件,得到是A的真子集,從而求出,得到m的最大值.【詳解】,解得:或,所以記或,;若“x2-2x-8>0”是“x<m”的必要不充分條件,則是A的真子集故,所以m最大值為故答案為:-2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意可得,,再由,即可求解.(2)設(shè)直線的方程為,將直線與橢圓方程聯(lián)立求得關(guān)于的方程,利用弦長公式求出,再利用點到直線的距離求出點到直線的距離,利用三角形的面積公式配方即可求解.【詳解】解(1)由題意得:,,∴,∴∴橢圓的方程為(2)∵直線的斜率為,∴可設(shè)直線的方程為與橢圓的方程聯(lián)立可得:①設(shè)兩點的坐標為,由韋達定理得:,∴點到直線的距離,∴由①知:,,令,則,∴令,則在上的最大值為∴的最大值為綜上所述:三角形面積的最大值2.【點睛】本題考查了根據(jù)求橢圓的標準方程,考查了直線與橢圓額位置關(guān)系中三角形面積問題,考查了學(xué)生的計算能力,屬于中檔題.18、.【解析】由x2﹣8x﹣20≤0,解得﹣2≤x≤10.根據(jù)非空集合S={x|1﹣m≤x≤1+m}.又x∈P是x∈S的必要條件,可得,1﹣m≤1+m,解得m范圍【詳解】由x2﹣8x﹣20≤0,解得﹣2≤x≤10.∴P=[﹣2,10]非空集合S={x|1﹣m≤x≤1+m}.又x∈P是x∈S的必要條件,∴,1﹣m≤1+m,解得0≤m≤3∴m的取值范圍是[0,3]【點睛】本題考查了不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題19、(1)2;(2).【解析】(1)利用正弦定理以及逆用兩角和的正弦公式得出,而,即可求出的值;(2)根據(jù)題意,由余弦定理得,再根據(jù)基本不等式求得,當且僅當時取得等號,即可求出面積的最大值.【小問1詳解】解:由題意得,由正弦定理得:,即,即,因為,所以【小問2詳解】解:由余弦定理,即,由基本不等式得:,即,當且僅當時取得等號,,所以面積的最大值為20、(1)證明見解析;(2)【解析】(1)利用題中所給的條件證明,,因為,所以,,即可證明平面;(2)先證明平面,以為坐標原點,,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標系,求出平面的一個法向量,平面的一個法向量,利用向量的夾角公式即可求解【詳解】(1)在圖①中,連接,如圖所示:因為四邊形為菱形,,所以是等邊三角形.因為為的中點,所以,.又,所以.在圖②中,,所以,即.因為,所以,.又,,平面.所以平面.(2)由(1)知,,因為,,平面.所以平面.以為坐標原點,,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標系:則,,,,.因為為的中點,所以.所以,.設(shè)平面的一個法向量為,由得.令,得,,所以.設(shè)平面的一個法向量為.因為,由得令,,,得則,由圖象可知二面角為銳角,所以二面角的余弦值為.21、(1)(2)【解析】(1)根據(jù)△恰為等邊三角形由題意知:得到,再利用拋物線的定義求解;(2)聯(lián)立,結(jié)合韋達定理,根據(jù)的夾角為,由求解.【小問1詳解】解:由題意知:,由拋物線的定義知:,由,解得,所以拋物線方程為;【小問2詳解】設(shè),由,得,則,,則,,因為向量的夾角為,所以,,則,且,所以,解得,所以實數(shù)的取值范圍.22、(1)極大值,沒有極小值(2)【解析】(1)把代入,然后對函數(shù)求導(dǎo),結(jié)合導(dǎo)數(shù)可求函數(shù)單調(diào)區(qū)間,即可得解;(2)構(gòu)造函數(shù),將不等式的恒成立轉(zhuǎn)化為函數(shù)的最值問題,結(jié)合導(dǎo)數(shù)與單調(diào)性及函數(shù)的性質(zhì)對進行分類討論,其中當和時易判斷函數(shù)的單調(diào)性以及最小值,而當時,的最小值與0進一步判斷【小問1詳解】當時,的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025電商平臺加盟合同模板
- 2025建筑工程施工用木材購銷合同樣本
- 社區(qū)零售業(yè)態(tài)創(chuàng)新:數(shù)字化運營視角下的社區(qū)團購市場趨勢分析
- 2025商業(yè)合作伙伴協(xié)議合同樣本
- 量子計算在量子計算物理中的應(yīng)用與實驗進展研究報告
- 生態(tài)農(nóng)業(yè)循環(huán)經(jīng)濟示范園2025年社會效益評估報告
- 農(nóng)業(yè)面源污染治理技術(shù)標準體系構(gòu)建與實施報告
- 2025年智慧農(nóng)業(yè)溫室建設(shè)與智能溫室病蟲害預(yù)警系統(tǒng)可行性分析報告
- 2025年制造業(yè)供應(yīng)鏈數(shù)字化協(xié)同管理下的供應(yīng)鏈風險管理策略與優(yōu)化報告
- 2025年辦公室主任個人工作總結(jié)模版
- 中國居民口腔健康狀況第四次中國口腔健康流行病學(xué)調(diào)查報告
- 中藥注射劑合理使用培訓(xùn)
- 第13課+清前中期的興盛與危機【中職專用】《中國歷史》(高教版2023基礎(chǔ)模塊)
- 2024年國家糧食和物資儲備局直屬事業(yè)單位招聘筆試參考題庫附帶答案詳解
- 蘇軾臨江仙課件大學(xué)語文完美版
- 《施工測量》課件
- 情緒健康管理服務(wù)規(guī)范
- 【環(huán)氧樹脂復(fù)合材料研究進展文獻綜述6000字】
- 人行道混凝土專項施工方案
- 《藥品儲存與養(yǎng)護技術(shù)》 課件全套 第1-8章 藥品儲運與養(yǎng)護技術(shù)- 特殊管理藥品的儲存與養(yǎng)護
- 水運工程重大事故隱患清單
評論
0/150
提交評論