2025屆江蘇省南通市通州區(qū)、海安縣數學高三上期末調研試題含解析_第1頁
2025屆江蘇省南通市通州區(qū)、海安縣數學高三上期末調研試題含解析_第2頁
2025屆江蘇省南通市通州區(qū)、海安縣數學高三上期末調研試題含解析_第3頁
2025屆江蘇省南通市通州區(qū)、海安縣數學高三上期末調研試題含解析_第4頁
2025屆江蘇省南通市通州區(qū)、海安縣數學高三上期末調研試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省南通市通州區(qū)、海安縣數學高三上期末調研試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知底面為正方形的四棱錐,其一條側棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.2.已知是等差數列的前項和,,,則()A.85 B. C.35 D.3.雙曲線的漸近線方程是()A. B. C. D.4.已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則()A. B. C. D.5.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.6.已知某超市2018年12個月的收入與支出數據的折線圖如圖所示:根據該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元7.已知點、.若點在函數的圖象上,則使得的面積為的點的個數為()A. B. C. D.8.若復數(為虛數單位)的實部與虛部相等,則的值為()A. B. C. D.9.復數的虛部為()A. B. C.2 D.10.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β11.關于函數在區(qū)間的單調性,下列敘述正確的是()A.單調遞增 B.單調遞減 C.先遞減后遞增 D.先遞增后遞減12.從拋物線上一點(點在軸上方)引拋物線準線的垂線,垂足為,且,設拋物線的焦點為,則直線的斜率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,邊長為1的正三角形中,點,分別在線段,上,將沿線段進行翻折,得到右圖所示的圖形,翻折后的點在線段上,則線段的最小值為_______.14.在四棱錐中,底面為正方形,面分別是棱的中點,過的平面交棱于點,則四邊形面積為__________.15.將函數的圖象向左平移個單位長度,得到一個偶函數圖象,則________.16.定義在R上的函數滿足:①對任意的,都有;②當時,,則函數的解析式可以是______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)記為數列的前項和,N.(1)求;(2)令,證明數列是等比數列,并求其前項和.18.(12分)在,角、、所對的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.19.(12分)數列滿足,,其前n項和為,數列的前n項積為.(1)求和數列的通項公式;(2)設,求的前n項和,并證明:對任意的正整數m、k,均有.20.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.21.(12分)已知,如圖,曲線由曲線:和曲線:組成,其中點為曲線所在圓錐曲線的焦點,點為曲線所在圓錐曲線的焦點.(Ⅰ)若,求曲線的方程;(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點,求證:弦的中點必在曲線的另一條漸近線上;(Ⅲ)對于(Ⅰ)中的曲線,若直線過點交曲線于點,求面積的最大值.22.(10分)某職稱晉級評定機構對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失敗.晉級成功晉級失敗合計男16女50合計(1)求圖中的值;(2)根據已知條件完成下面列聯表,并判斷能否有的把握認為“晉級成功”與性別有關?(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數為,求的分布列與數學期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.024

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項C是符合要求的.考點:三視圖2、B【解析】

將已知條件轉化為的形式,求得,由此求得.【詳解】設公差為,則,所以,,,.故選:B【點睛】本小題主要考查等差數列通項公式的基本量計算,考查等差數列前項和的計算,屬于基礎題.3、C【解析】

根據雙曲線的標準方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點睛】本題考查雙曲線的漸近線方程的求法,是基礎題,解題時要認真審題,注意雙曲線的簡單性質的合理運用.4、A【解析】

由已知可得,根據二倍角公式即可求解.【詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則,.故選:A.【點睛】本題考查三角函數定義、二倍角公式,考查計算求解能力,屬于基礎題.5、B【解析】

求得直線的方程,聯立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據列方程,化簡后求得離心率.【詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質,考查運算求解能力,屬于中檔題.6、D【解析】

用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【點睛】本小題主要考查圖表分析,考查收益的計算方法,屬于基礎題.7、C【解析】

設出點的坐標,以為底結合的面積計算出點到直線的距離,利用點到直線的距離公式可得出關于的方程,求出方程的解,即可得出結論.【詳解】設點的坐標為,直線的方程為,即,設點到直線的距離為,則,解得,另一方面,由點到直線的距離公式得,整理得或,,解得或或.綜上,滿足條件的點共有三個.故選:C.【點睛】本題考查三角形面積的計算,涉及點到直線的距離公式的應用,考查運算求解能力,屬于中等題.8、C【解析】

利用復數的除法,以及復數的基本概念求解即可.【詳解】,又的實部與虛部相等,,解得.故選:C【點睛】本題主要考查復數的除法運算,復數的概念運用.9、D【解析】

根據復數的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復數的除法運算和復數的概念.10、B【解析】

根據線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關知識判斷B選項的正確性.根據面面垂直的判定定理,判斷C選項的正確性.根據面面平行的性質判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點睛】本小題主要考查空間線線、線面和面面有關命題真假性的判斷,屬于基礎題.11、C【解析】

先用誘導公式得,再根據函數圖像平移的方法求解即可.【詳解】函數的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數的平移與單調性的求解.屬于基礎題.12、A【解析】

根據拋物線的性質求出點坐標和焦點坐標,進而求出點的坐標,代入斜率公式即可求解.【詳解】設點的坐標為,由題意知,焦點,準線方程,所以,解得,把點代入拋物線方程可得,,因為,所以,所以點坐標為,代入斜率公式可得,.故選:A【點睛】本題考查拋物線的性質,考查運算求解能力;屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設,,在中利用正弦定理得出關于的函數,從而可得的最小值.【詳解】解:設,,則,,∴,在中,由正弦定理可得,即,∴,∴當即時,取得最小值.故答案為.【點睛】本題考查正弦定理解三角形的應用,屬中檔題.14、【解析】

設是中點,由于分別是棱的中點,所以,所以,所以四邊形是平行四邊形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四邊形是矩形.而.從而.故答案為:.【點睛】本小題主要考查空間平面圖形面積的計算,考查線面垂直的判定,考查空間想象能力和邏輯推理能力,屬于中檔題.15、【解析】

根據平移后關于軸對稱可知關于對稱,進而利用特殊值構造方程,從而求得結果.【詳解】向左平移個單位長度后得到偶函數圖象,即關于軸對稱關于對稱即:本題正確結果:【點睛】本題考查根據三角函數的對稱軸求解參數值的問題,關鍵是能夠通過平移后的對稱軸得到原函數的對稱軸,進而利用特殊值的方式來進行求解.16、(或,答案不唯一)【解析】

由可得是奇函數,再由時,可得到滿足條件的奇函數非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數,由時,,知或等,答案不唯一.故答案為:(或,答案不唯一).【點睛】本題考查抽象函數的性質,涉及到由表達式確定函數奇偶性,是一道開放性的題,難度不大.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見詳解,【解析】

(1)根據,可得,然后作差,可得結果.(2)根據(1)的結論,用取代,得到新的式子,然后作差,可得結果,最后根據等比數列的前項和公式,可得結果.【詳解】(1)由①,則②②-①可得:所以(2)由(1)可知:③則④④-③可得:則,且令,則,所以數列是首項為,公比為的等比數列所以【點睛】本題主要考查遞推公式以及之間的關系的應用,考驗觀察能力以及分析能力,屬中檔題.18、(1)(2)答案不唯一,見解析【解析】

(1)由題意根據和差角的三角函數公式可得,再根據同角三角函數基本關系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答案.【詳解】解:(1)在中,因為,又已知,所以,因為,所以,于是.所以.(2)在中,由余弦定理得,得解得或,當時,的面積,當時,的面積.【點睛】本題考查正余弦定理理解三角形,涉及三角形的面積公式和分類討論思想,屬于中檔題.19、(1),;(2),證明見解析【解析】

(1)利用已知條件建立等量關系求出數列的通項公式.(2)利用裂項相消法求出數列的和,進一步利用放縮法求出結論.【詳解】(1),,得是公比為的等比數列,,,當時,數列的前項積為,則,兩式相除得,得,又得,;(2),故.【點睛】本題考查的知識要點:數列的通項公式的求法及應用,數列的前項和的應用,裂項相消法在數列求和中的應用,主要考查學生的運算能力和轉換能力,屬于中檔題.20、(1)見解析;(2)見解析【解析】

(1)根據,分別是,的中點,即可證明,從而可證平面;(2)先根據為正三角形,且D是的中點,證出,再根據平面平面,得到平面,從而得到,結合,即可得證.【詳解】(1)∵,分別是,的中點∴∵平面,平面∴平面.(2)∵為正三角形,且D是的中點∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.【點睛】本題考查直線與平面平行的判定,面面垂直的性質等,解題時要認真審題,注意空間思維能力的培養(yǎng),中檔題.21、(Ⅰ)和.;(Ⅱ)證明見解析;(Ⅲ).【解析】

(Ⅰ)由,可得,解出即可;(Ⅱ)設點,設直線,與橢圓方程聯立可得:,利用,根與系數的關系、中點坐標公式,證明即可;(Ⅲ)由(Ⅰ)知,曲線,且,設直線的方程為:,與橢圓方程聯立可得:,利用根與系數的關系、弦長公式、三角形的面釈計算公式、基本不等式的性質,即可求解.【詳解】(Ⅰ)由題意:,,解得,則曲線的方程為:和.(Ⅱ)證明:由題意曲線的漸近線為:,設直線,則聯立,得,,解得:,又由數形結合知.設點,則,,,,,即點在直線上.(Ⅲ)由(Ⅰ)知,曲線,點,設直線的方程為:,聯立,得:,,設,,,,面積,令,,當且僅當,即時等號成立,所以面積的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論