上海市寶山區(qū)寶山中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第1頁(yè)
上海市寶山區(qū)寶山中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第2頁(yè)
上海市寶山區(qū)寶山中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第3頁(yè)
上海市寶山區(qū)寶山中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第4頁(yè)
上海市寶山區(qū)寶山中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

上海市寶山區(qū)寶山中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測(cè)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若是雙曲線的左右焦點(diǎn),是坐標(biāo)原點(diǎn).過(guò)作的一條漸近線的垂線,垂足為,若,則該雙曲線的離心率為()A. B.C. D.2.已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,左焦點(diǎn)、右頂點(diǎn)和下頂點(diǎn)分別為,坐標(biāo)原點(diǎn)到直線的距離為,則的面積為()A. B.4C. D.3.在直三棱柱中,,且,點(diǎn)是棱上的動(dòng)點(diǎn),則點(diǎn)到平面距離的最大值是()A. B.C.2 D.4.在四面體OABC中,,,,則與AC所成角的大小為()A.30° B.60°C.120° D.150°5.若雙曲線與橢圓有公共焦點(diǎn),且離心率,則雙曲線的標(biāo)準(zhǔn)方程為()A. B.C. D.6.函數(shù)在處有極小值5,則()A. B.C.或 D.或37.黃金矩形是寬()與長(zhǎng)()的比值為黃金分割比的矩形,如圖所示,把黃金矩形分割成一個(gè)正方形和一個(gè)黃金矩形,再把矩形分割出正方形.在矩形內(nèi)任取一點(diǎn),則該點(diǎn)取自正方形內(nèi)的概率是A. B.C. D.8.圓與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切9.在正四面體中,棱長(zhǎng)為2,且E是棱AB中點(diǎn),則的值為A. B.1C. D.10.已知,,且,則()A. B.C. D.11.已知向量,,且與互相垂直,則()A. B.C. D.12.如果,,那么直線不經(jīng)過(guò)的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn):平面上到兩定點(diǎn)A,B的距離之比為常數(shù)的點(diǎn)的軌跡是—個(gè)圓心在直線上的圓.該圓被稱為阿氏圓,如圖,在長(zhǎng)方體中,,點(diǎn)E在棱上,,動(dòng)點(diǎn)P滿足,若點(diǎn)P在平面內(nèi)運(yùn)動(dòng),則點(diǎn)P對(duì)應(yīng)的軌跡的面積是___________;F為的中點(diǎn),則三棱錐體積的最小值為_(kāi)__________.14.4與16的等比中項(xiàng)是________.15.將集合且中所有的元素從小到大排列得到的數(shù)列記為,則___________(填數(shù)值).16.已知實(shí)數(shù),,,滿足,,,則的最大值是______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在長(zhǎng)方體中,,.點(diǎn)E在上,且(1)求證:平面;(2)求二面角的余弦值18.(12分)已知三棱柱中,.(1)求證:平面平面.(2)若,在線段上是否存在一點(diǎn)使平面和平面所成角的余弦值為若存在,確定點(diǎn)的位置;若不存在,說(shuō)明理由.19.(12分)已知拋物線C:經(jīng)過(guò)點(diǎn)(1,-1).(1)求拋物線C的方程及其焦點(diǎn)坐標(biāo);(2)過(guò)拋物線C上一動(dòng)點(diǎn)P作圓M:的一條切線,切點(diǎn)為A,求切線長(zhǎng)|PA|的最小值.20.(12分)已知圓C:,直線l:.(1)當(dāng)a為何值時(shí),直線l與圓C相切;(2)當(dāng)直線l與圓C相交于A,B兩點(diǎn),且時(shí),求直線l的方程.21.(12分)已知橢圓與橢圓有共同的焦點(diǎn),且橢圓經(jīng)過(guò)點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)為橢圓的左焦點(diǎn),為橢圓上任意一點(diǎn),為坐標(biāo)原點(diǎn),求的最小值.22.(10分)在等差數(shù)列中,已知公差,且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)已知條件,找出,的齊次關(guān)系式即可得到雙曲線的離心率.【詳解】由題意得,,,在中,,因,故,在,由余弦定理得,即,計(jì)算得,故.故選:D.【點(diǎn)睛】雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見(jiàn)有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,結(jié)合轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)2、C【解析】設(shè),根據(jù)題意,可知的方程為直線,根據(jù)原點(diǎn)到直線的距離建立方程,求出,進(jìn)而求出,的值,以及到直線的距離,再根據(jù)面積公式,即可求出結(jié)果.【詳解】設(shè),由題意可知,其中,所以的方程為,即所以原點(diǎn)到直線的距離為,所以,即,;所以直線的方程為,所以到直線的距離為;又,所以的面積為.故選:C.3、D【解析】建立空間直角坐標(biāo)系,設(shè)出點(diǎn)的坐標(biāo),運(yùn)用點(diǎn)到平面的距離公式,求出點(diǎn)到平面距離的最大值.【詳解】解:以為原點(diǎn),分別以,,所在直線為,,軸建立如圖所示的空間直角坐標(biāo)第,則,,,設(shè)點(diǎn),故,,.設(shè)設(shè)平面的法向量為,則即,取,則.所以點(diǎn)到平面距離.當(dāng),即時(shí),距離有最大值為.故選:D.【點(diǎn)睛】本題考查空間內(nèi)點(diǎn)到面的距離最值問(wèn)題,屬于中檔題.4、B【解析】以為空間的一個(gè)基底,求出空間向量求的夾角即可判斷作答.【詳解】在四面體OABC中,不共面,則,令,依題意,,設(shè)與AC所成角的大小為,則,而,解得,所以與AC所成角的大小為.故選:B5、A【解析】首先求出橢圓的焦點(diǎn)坐標(biāo),然后根據(jù)可得雙曲線方程中的的值,然后可得答案.【詳解】橢圓焦點(diǎn)坐標(biāo)為所以雙曲線的焦點(diǎn)在軸上,,因?yàn)?,所以,所以雙曲線的標(biāo)準(zhǔn)方程為故選:A6、A【解析】由題意條件和,可建立一個(gè)關(guān)于的方程組,解出的值,然后再將帶入到中去驗(yàn)證其是否滿足在處有極小值,排除增根,即可得到答案.【詳解】由題意可得,則,解得,或.當(dāng),時(shí),.由,得;由,得.則在上單調(diào)遞增,在上單調(diào)遞減,故在處有極大值5,不符合題意.當(dāng),時(shí),.由,得;由,得.則在上單調(diào)遞減,在上單調(diào)遞增,故在處有極小值5,符合題意,從而故選:A.7、C【解析】設(shè)矩形的長(zhǎng),寬分別為,所以,把黃金矩形分割成一個(gè)正方形和一個(gè)黃金矩形,所以,設(shè)矩形的面積為,正方形的面積為,設(shè)在矩形內(nèi)任取一點(diǎn),則該點(diǎn)取自正方形內(nèi)的概率是,則,故本題選C.【詳解】本題考查了幾何概型,考查了運(yùn)算能力.8、A【解析】求出兩圓的圓心及半徑,求出圓心距,從而可得出結(jié)論.【詳解】解:圓的圓心為,半徑為,圓圓心為,半徑為,則兩圓圓心距,因?yàn)?,所以兩圓相交.故選:A.9、A【解析】根據(jù)題意,由正四面體的性質(zhì)可得:,可得,由E是棱中點(diǎn),可得,代入,利用數(shù)量積運(yùn)算性質(zhì)即可得出.【詳解】如圖所示由正四面體的性質(zhì)可得:可得:是棱中點(diǎn)故選:【點(diǎn)睛】本題考查空間向量的線性運(yùn)算,考查立體幾何中的垂直關(guān)系,考查轉(zhuǎn)化與化歸思想,屬于中等題型.10、D【解析】利用空間向量共線的坐標(biāo)表示可求得、的值,即可得解.【詳解】因?yàn)?,則,所以,,,因此,.故選:D11、D【解析】根據(jù)垂直關(guān)系可得,由向量坐標(biāo)運(yùn)算可構(gòu)造方程求得結(jié)果.【詳解】,,又與互相垂直,,解得:.故選:D.12、A【解析】將直線化為,結(jié)合已知條件即可判斷不經(jīng)過(guò)的象限.【詳解】由題設(shè),直線可寫成,又,,∴,,故直線過(guò)二、三、四象限,不過(guò)第一象限.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】建立空間直角坐標(biāo)系,根據(jù),可得對(duì)應(yīng)的軌跡方程;先求的面積,其是固定值,要使體積最小,只需求點(diǎn)到平面的距離的最小值即可.【詳解】分別以為軸建系,設(shè),而,,,,.由,有,化簡(jiǎn)得對(duì)應(yīng)的軌跡方程為.所以點(diǎn)P對(duì)應(yīng)的軌跡的面積是.易得的三個(gè)邊即是邊長(zhǎng)為為的等邊三角形,其面積為,,設(shè)平面的一個(gè)法向量為,則有,可取平面的一個(gè)法向量為,根據(jù)點(diǎn)的軌跡,可設(shè),,所以點(diǎn)到平面的距離,所以故答案為:;14、±8【解析】解析由G2=4×16=64得G=±8.答案±815、992【解析】列舉數(shù)列的前幾項(xiàng),觀察特征,可得出.詳解】由題意得觀察規(guī)律可得中,以為被減數(shù)的項(xiàng)共有個(gè),因?yàn)?,所以是中的?項(xiàng),所以.故答案為:992.16、10【解析】采用數(shù)形結(jié)合法,將所求問(wèn)題轉(zhuǎn)化為兩點(diǎn)到直線的距離和的倍,結(jié)合梯形中位線性質(zhì)和三角形三邊關(guān)系可求得答案.【詳解】由,,,可知,點(diǎn)在圓上,由,即為等腰直角三角形,結(jié)合點(diǎn)到直線距離公式可理解為圓心到直線的距離,變形得,即所求問(wèn)題可轉(zhuǎn)化為兩點(diǎn)到直線的距離和的倍,作于于,中點(diǎn)為,中點(diǎn)為,由梯形中位線性質(zhì)可得,,作于,于,連接,則,當(dāng)且僅當(dāng)與重合,三點(diǎn)共線時(shí),有最大值,由點(diǎn)到直線距離公式可得,由幾何性質(zhì)可得,,此時(shí),故的最大值為.故答案為:10.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】(1)建立空間直角坐標(biāo)系,分別寫出,,的坐標(biāo),證明,,即可得證;(2)由(1)知,的法向量為,直接寫出平面法向量,按照公式求解即可.【小問(wèn)1詳解】在長(zhǎng)方體中,以為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立如圖所示空間直角坐標(biāo)系因?yàn)?,,所以,,,,,則,,,所以有,,則,,又所以平面小問(wèn)2詳解】由(1)知平面的法向量為,而平面法向量為所以,由圖知二面角為銳二面角,所以二面角的余弦值為18、(1)證明見(jiàn)解析;(2)在線段上存在一點(diǎn),且P是靠近C的四等分點(diǎn).【解析】(1)連接,根據(jù)給定條件證明平面得即可推理作答.(2)在平面內(nèi)過(guò)C作,再以C為原點(diǎn),射線CA,CB,Cz分別為x,y,z軸正半軸建立空間直角坐標(biāo)系,利用空間向量計(jì)算判斷作答.【小問(wèn)1詳解】在三棱柱中,四邊形是平行四邊形,而,則是菱形,連接,如圖,則有,因,,平面,于是得平面,而平面,則,由得,,平面,從而得平面,又平面,所以平面平面.【小問(wèn)2詳解】在平面內(nèi)過(guò)C作,由(1)知平面平面,平面平面,則平面,以C為原點(diǎn),射線CA,CB,Cz分別為x,y,z軸正半軸建立空間直角坐標(biāo)系,如圖,因,,則,假設(shè)在線段上存在符合要求的點(diǎn)P,設(shè)其坐標(biāo)為,則有,設(shè)平面的一個(gè)法向量,則有,令得,而平面的一個(gè)法向量,依題意,,化簡(jiǎn)整理得:而,解得,所以在線段上存在一點(diǎn),且P是靠近C的四等分點(diǎn),使平面和平面所成角的余弦值為.19、(1),焦點(diǎn)坐標(biāo)為;(2)【解析】(1)將點(diǎn)代入拋物線方程求解出的值,則拋物線方程和焦點(diǎn)坐標(biāo)可知;(2)設(shè)出點(diǎn)坐標(biāo),根據(jù)切線垂直于半徑,根據(jù)點(diǎn)到點(diǎn)距離公式表示出,然后結(jié)合二次函數(shù)的性質(zhì)求解出的最小值.【小問(wèn)1詳解】解:因?yàn)閽佄锞€過(guò)點(diǎn),所以,解得,所以拋物線的方程為:,焦點(diǎn)坐標(biāo)為;【小問(wèn)2詳解】解:設(shè),因?yàn)闉閳A的切線,所以,,所以,所以當(dāng)時(shí),四邊形有最小值且最小值為.20、(1);(2)或.【解析】(1)根據(jù)圓心到直線的距離d等于圓的半徑r即可求得答案;(2)由并結(jié)合(1)即可求得答案.【小問(wèn)1詳解】由圓:,可得,其圓心為,半徑,若直線與圓相切,則圓心到直線:距離,即,可得:.【小問(wèn)2詳解】由(1)知圓心到直線的距離,因?yàn)椋?,解得:,所以,整理可得:,解得:或,則直線的方程為或.21、(1)(2)【解析】(1)設(shè)橢圓的方程為,將點(diǎn)的坐標(biāo)代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)設(shè)點(diǎn),則,且,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算結(jié)合二次函數(shù)的基本性質(zhì)可求得的最小值.【小問(wèn)1詳解】(1)由題可設(shè)橢圓的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論