北京市懷柔區(qū)市級名校2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第1頁
北京市懷柔區(qū)市級名校2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第2頁
北京市懷柔區(qū)市級名校2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第3頁
北京市懷柔區(qū)市級名校2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第4頁
北京市懷柔區(qū)市級名校2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北京市懷柔區(qū)市級名校2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國古代《易經(jīng)》一書中記載,人們通過在繩子上打結(jié)來記錄數(shù)據(jù),即“結(jié)繩計數(shù)”,如圖,一位古人在從右到左(即從低位到高位)依次排列的紅繩子上打結(jié),滿六進(jìn)一,用6來記錄每年進(jìn)的錢數(shù),由圖可得,這位古人一年收入的錢數(shù)用十進(jìn)制表示為()A.180 B.179C.178 D.1772.已知等比數(shù)列的公比q為整數(shù),且,,則()A.2 B.3C.-2 D.-33.已知正方形ABCD的邊長為2,E,F(xiàn)分別為CD,CB的中點,分別沿AE,AF將三角形ADE,ABF折起,使得點B,D恰好重合,記為點P,則AC與平面PCE所成角等于()A. B.C. D.4.已知橢圓的短軸長和焦距相等,則a的值為()A.1 B.C. D.5.已知,,,執(zhí)行如圖所示的程序框圖,輸出的值為()A. B.C. D.6.中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術(shù).如圖所示的圓形剪紙中,正六邊形的所有頂點都在該圓上,若在該圓形剪紙的內(nèi)部投擲一點,則該點恰好落在正六邊形內(nèi)部的概率為()A. B.C. D.7.下列命題中正確的個數(shù)為()①若向量,與空間任意向量都不能構(gòu)成基底,則;②若向量,,是空間一組基底,則,,也是空間的一組基底;③為空間一組基底,若,則;④對于任意非零空間向量,,若,則A.1 B.2C.3 D.48.已知拋物線的準(zhǔn)線方程為,則此拋物線的標(biāo)準(zhǔn)方程為()A. B.C. D.9.?dāng)?shù)列,,,,…的一個通項公式為()A. B.C. D.10.當(dāng)圓的圓心到直線的距離最大時,()A B.C. D.11.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中說:“九百九十六斤棉,贈分八子做盤纏,次第每人多十七,要將第八數(shù)來言,務(wù)要分明依次第,孝和休惹外人傳.”意為:“996斤棉花,分別贈送給8個子女做旅費,從第一個孩子開始,以后每人依次多17斤,直到第8個孩子為止.分配時一定要依照次序分,要順從父母,兄弟間和氣,不要引得外人說閑話.”在這個問題中,第5個孩子分到棉花為()A.133斤 B.116斤C.99斤 D.65斤12.已知橢圓:,左、右焦點分別為,過的直線交橢圓于兩點,若的最大值為5,則的值是A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線的焦距是10,曲線上的點到一個焦點的距離是2,則點到另一個焦點的距離為__________.14.兩姐妹同時推銷某一商品,現(xiàn)抽取他們其中8天的銷售量(單位:臺),得到的莖葉圖如圖所示,已知妹妹的銷售量的平均數(shù)為14,姐姐的銷售量的中位數(shù)比妹妹的銷售量的眾數(shù)大2,則的值為______.15.雙曲線的焦距為____________16.若一個球表面積為,則該球的半徑為____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)從甲、乙兩名學(xué)生中選拔一人參加射擊比賽,現(xiàn)對他們的射擊水平進(jìn)行測試,兩人在相同條件下各射靶10次,每次命中的環(huán)數(shù)如下:甲:7,8,6,8,6,5,9,10,7,乙:9,5,7,8,7,6,8,6,7,(1)求,,,(2)你認(rèn)為應(yīng)該選哪名學(xué)生參加比賽?為什么?18.(12分)已知點是橢圓E:一點,且橢圓的離心率為.(1)求此橢圓E方程;(2)設(shè)橢圓的左頂點為A,過點A向上作一射線交橢圓E于點B,以AB為邊作矩形ABCD,使得對邊CD經(jīng)過橢圓中心O.(i)求矩形ABCD面積的最大值;(ii)問:矩形ABCD能否為正方形?若能,求出直線AB的方程;若不能,請說明理由.19.(12分)解下列不等式:(1);(2).20.(12分)如圖,四棱錐中,是邊長為2的正三角形,底面為菱形,且平面平面,,為上一點,滿足.(1)證明:;(2)求二面角的余弦值.21.(12分)如圖,四邊形是正方形,平面,,(1)證明:平面平面;(2)若與平面所成角為,求二面角的余弦值22.(10分)已知動圓過點,且與直線:相切(1)求動圓圓心的軌跡方程;(2)若過點且斜率的直線與圓心的軌跡交于兩點,求線段的長度

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由于從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,所以從右到左的數(shù)分別為、、,然后把它們相加即可.【詳解】(個).所以古人一年收入的錢數(shù)用十進(jìn)制表示為個.故選:D.2、A【解析】由等比數(shù)列的性質(zhì)有,結(jié)合已知求出基本量,再由即可得答案.【詳解】因為,,且q為整數(shù),所以,,即q=2.所以.故選:A3、A【解析】如圖,以PE,PF,PA分別為x,y,z軸建立空間直角坐標(biāo)系,利用空間向量求解【詳解】由題意得,因為正方形ABCD的邊長為2,E,F(xiàn)分別為CD,CB的中點,所以,所以,所以所以PA,PE,PF三線互相垂直,故以PE,PF,PA分別為x,y,z軸建立空間直角坐標(biāo)系,則,,,,設(shè),則由,,,得,解得,則設(shè)平面的法向量為,則,令,則,因為,所以AC與平面PCE所成角的正弦值,因為AC與平面PCE所成角為銳角,所以AC與平面PCE所成角為,故選:A4、A【解析】由題設(shè)及橢圓方程可得,即可求參數(shù)a的值.【詳解】由題設(shè)易知:橢圓參數(shù),即有,可得故選:A5、B【解析】計算出、的值,執(zhí)行程序框圖中的程序,進(jìn)而可得出輸出結(jié)果.【詳解】,,則,執(zhí)行如圖所示的程序,,成立,則,不成立,輸出的值為.故選:B.6、D【解析】設(shè)圓的半徑,求出圓的面積與正六邊形的面積,再根據(jù)幾何概型的概率公式計算可得;【詳解】解:設(shè)圓的半徑,則,則,所以,所以在該圓形剪紙的內(nèi)部投擲一點,則該點恰好落在正六邊形內(nèi)部的概率;故選:D7、C【解析】根據(jù)題意、空間向量基底的概念和共線的運算即可判斷命題①②③,根據(jù)空間向量的平行關(guān)系即可判斷命題④.【詳解】①:向量與空間任意向量都不能構(gòu)成一個基底,則與共線或與其中有一個為零向量,所以,故①正確;②:由向量是空間一組基底,則空間中任意一個向量,存在唯一的實數(shù)組使得,所以也是空間一組基底,故②正確;③:由為空間一組基底,若,則,所以,故③正確;④:對于任意非零空間向量,,若,則存在一個實數(shù)使得,有,又中可以有為0的,分式?jīng)]有意義,故④錯誤.故選:C8、D【解析】由已知設(shè)拋物線方程為,由題意可得,求出,從而可得拋物線的方程【詳解】因為拋物線的準(zhǔn)線方程為,所以設(shè)拋物線方程為,則,得,所以拋物線方程為,故選:D,9、B【解析】根據(jù)給定數(shù)列,結(jié)合選項提供通項公式,將n代入驗證法判斷是否為通項公式.【詳解】A:時,排除;B:數(shù)列,,,,…滿足.C:時,排除;D:時,排除;故選:B10、C【解析】求出圓心坐標(biāo)和直線過定點,當(dāng)圓心和定點的連線與直線垂直時滿足題意,再利用兩直線垂直,斜率乘積為-1求解即可.【詳解】解:因為圓的圓心為,半徑,又因為直線過定點A(-1,1),故當(dāng)與直線垂直時,圓心到直線的距離最大,此時有,即,解得.故選:C.11、A【解析】根據(jù)等差數(shù)列的前n項和公式、等差數(shù)列的通項公式進(jìn)行求解即可.【詳解】依題意得,八個子女所得棉花斤數(shù)依次構(gòu)成等差數(shù)列,設(shè)該等差數(shù)列為,公差為d,前n項和為,第一個孩子所得棉花斤數(shù)為,則由題意得,,解得,故選:A12、D【解析】由題意可知橢圓是焦點在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過橢圓焦點的弦中通徑的長最短,可知當(dāng)AB垂直于x軸時|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【詳解】由0<b<2可知,焦點在x軸上,∵過F1的直線l交橢圓于A,B兩點,則|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|當(dāng)AB垂直x軸時|AB|最小,|BF2|+|AF2|值最大,此時|AB|=b2,則5=8﹣b2,解得b,故選D【點睛】本題考查直線與圓錐曲線的關(guān)系,考查了橢圓的定義,考查橢圓的通徑公式,考查計算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、或10.【解析】對參數(shù)a進(jìn)行討論,考慮曲線是橢圓和雙曲線的情況,進(jìn)而結(jié)合橢圓與雙曲線的定義和性質(zhì)求得答案.【詳解】由題意,曲線的半焦距為5,若曲線是焦點在x軸上的橢圓,則a>16,所以,而橢圓上的點到一個焦點距離是2,則點到另一個焦點的距離為;若曲線是焦點在y軸上的橢圓,則0<a<16,所以,舍去;若曲線是雙曲線,則a<0,容易判斷雙曲線的焦點在y軸,所以,不妨設(shè)點P在雙曲線的上半支,上下焦點分別為,因為實半軸長為4,容易判斷點P到下焦點的距離的最小值為4+5=9>2,不合題意,所以點P到上焦點的距離為2,則它到下焦點的距離.故答案為:或10.14、13【解析】先根據(jù)妹妹的銷售量的平均數(shù)為14,求得y,進(jìn)而得到其眾數(shù),然后再根據(jù)姐姐的銷售量的中位數(shù)比妹妹的銷售量的眾數(shù)大2,得到姐姐的銷售量的中位數(shù).【詳解】因為妹妹的銷售量的平均數(shù)為14,所以,解得,由莖葉圖知:妹妹的銷售量的眾數(shù)是14,因為姐姐的銷售量的中位數(shù)比妹妹的銷售量的眾數(shù)大2,所以姐姐的銷售量的中位數(shù)是16,所以,解得,所以,故答案為:1315、【解析】根據(jù)雙曲線的方程求出,再求焦距的值.【詳解】因為雙曲線方程為,所以,.雙曲線的焦距為.故答案為:.16、【解析】設(shè)球的半徑為,代入球的表面積公式得答案【詳解】解:設(shè)球的半徑為,則,得,即或(舍去)故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);;;;(2)選乙參加比賽,理由見解析.【解析】(1)利用平均數(shù)和方程公式求解;(2)利用(1)的結(jié)果作出判斷.【詳解】(1)由數(shù)據(jù)得:;;(2)由(1)可知,甲乙兩人平均成績一樣,乙的方差小于甲的方差,說明乙的成績更穩(wěn)定;應(yīng)該選乙參加比賽.18、(1);(2)(i);(ii).【解析】(1)根據(jù)給定條件列出關(guān)于a,b的方程組,解方程組代入得解.(2)(i)設(shè)直線AB方程,與橢圓方程聯(lián)立求出線段AB長,再求出原點O到直線AB距離列出矩形面積求解即可;(ii)由(i)及列出方程,由方程解的情況即可判斷計算作答.【小問1詳解】令橢圓半焦距為c,依題意,,解得,所以橢圓E的方程為:.【小問2詳解】(i)由(1)知,,設(shè)直線AB的斜率為,則直線AB的方程為:,由消去y并整理得:,點的橫坐標(biāo),則點的橫坐標(biāo)有:,解得,則有,因矩形的邊CD過原點O,則,因此,矩形的面積,當(dāng)且僅當(dāng),即時取“=”,所以矩形ABCD面積的最大值是.(ii)假定矩形ABCD能成為正方形,則,由(i)知:,整理得:,即,而,解得,所以矩形ABCD能成為正方形,此時,直線AB的方程為.【點睛】思路點睛:圓錐曲線中的最值問題,往往需要利用韋達(dá)定理構(gòu)建目標(biāo)的函數(shù)關(guān)系式,自變量可以斜率或點的橫、縱坐標(biāo)等.而目標(biāo)函數(shù)的最值可以通過二次函數(shù)或基本不等式或?qū)?shù)等求得.19、(1)(2)【解析】(1)利用十字相乘解題即可(2)利用分子分母同號為正,異號為負(fù)思想,注意討論分母不為0【小問1詳解】由題,即,解得或,即;【小問2詳解】由題,解得或,即20、(1)證明見解析;(2).【解析】(1)設(shè)為中點,連接,根據(jù),證明平面得到答案.(2)以為原點,,,分別為,,軸建立空間直角坐標(biāo)系,計算各點坐標(biāo),計算平面和平面的法向量,根據(jù)向量夾角公式計算得到答案.【詳解】(1)設(shè)為中點,連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點,,,分別為,,軸建立空間直角坐標(biāo)系,則,,,,,,由,,,即,∴,,,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)二面角的平面角為,則,∴二面角的的余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力,建立空間直角坐標(biāo)系是解題的關(guān)鍵.21、(1)證明見解析;(2).【解析】(1)連接與交于點O,易得平面,取的中點M,易得為平行四邊形,即,得到平面,然后利用面面垂直的判定定理證明;(2)以A為坐標(biāo)原點,分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),根據(jù)與平面所成角為,由,解得,然后分別求得平面的一個法向量,平面的一個法向量,由求解.【詳解】(1)如圖所示:連接與交于點O,因為為正方形,故,又平面,故,由,故平面,取的中點M,連接,注意到為的中位線,故,且,因此,且,故為平行四邊形,即,因此平面,而平面,故平面平面(2)以A坐標(biāo)原點,分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),則,由(1)可知平面,因此平面的一個法向量為,而,由與平面所成角為,得,即,解得;則,設(shè)平面的一個法向量為,則得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論