版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆上海市浦光中學數(shù)學高二上期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線C的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.2.下列命題正確的是()A.經過三點確定一個平面B.經過一條直線和一個點確定一個平面C.四邊形確定一個平面D.兩兩相交且不共點的三條直線確定一個平面3.已知直線過點,且與直線垂直,則直線的方程為()A. B.C. D.4.記等比數(shù)列的前項和為,若,,則()A.12 B.18C.21 D.275.已知不等式的解集為,關于x的不等式的解集為B,且,則實數(shù)a的取值范圍為()A. B.C. D.6.已知函數(shù)滿足,則曲線在點處的切線方程為()A. B.C. D.7.已知圓和圓恰有三條公共切線,則的最小值為()A.6 B.36C.10 D.8.已知點是橢圓的左右焦點,橢圓上存在不同兩點使得,則橢圓的離心率的取值范圍是()A. B.C. D.9.我國新冠肺炎疫情防控進入常態(tài)化,各地有序進行疫苗接種工作,下面是我國甲、乙兩地連續(xù)11天的疫苗接種指數(shù)折線圖,根據(jù)該折線圖,下列說法不正確的是()A.這11天甲地指數(shù)和乙地指數(shù)均有增有減B.第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%C.在這11天期間,乙地指數(shù)的增量大于甲地指數(shù)的增量D.第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量10.若,則x的值為()A.4 B.6C.4或6 D.811.“趙爽弦圖”是我國古代數(shù)學的瑰寶,如圖所示,它是由四個全等的直角三角形和一個正方形構成.現(xiàn)用4種不同的顏色(4種顏色全部使用)給這5個區(qū)域涂色,要求相鄰的區(qū)域不能涂同一種顏色,每個區(qū)域只涂一種顏色,則不同的涂色方案有()A.24種 B.48種C.72種 D.96種12.已知圓柱的表面積為定值,當圓柱的容積最大時,圓柱的高的值為()A.1 B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準線方程為_____14.已知數(shù)列的前項和則____________________15.數(shù)列滿足,則__________.16.已知函數(shù),是其導函數(shù),若曲線的一條切線為直線:,則的最小值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(m≥0).(1)當m=0時,求曲線在點(1,f(1))處的切線方程;(2)若函數(shù)的最小值為,求實數(shù)m的值.18.(12分)圓心在軸正半軸上、半徑為2的圓與直線相交于兩點且.(1)求圓的標準方程;(2)若直線,圓上僅有一個點到直線的距離為1,求直線的方程.19.(12分)在柯橋古鎮(zhèn)的開發(fā)中,為保護古橋OA,規(guī)劃在O的正東方向100m的C處向對岸AB建一座新橋,使新橋BC與河岸AB垂直,并設立一個以線段OA上一點M為圓心,與直線BC相切的圓形保護區(qū)(如圖所示),且古橋兩端O和A與圓上任意一點的距離都不小于50m,經測量,點A位于點O正南方向25m,,建立如圖所示直角坐標系(1)求新橋BC的長度;(2)當OM多長時,圓形保護區(qū)的面積最???20.(12分)如圖,已知橢圓的左頂點,過右焦點的直線與橢圓相交于兩點,當直線軸時,.(1)求橢圓的方程;(2)記,的面積分別為,求的取值范圍;(3)若的重心在圓上,求直線的斜率.21.(12分)已知的三個內角,,的對邊分別為,,,且滿足.(1)求角的大?。唬?)若,,,求的長.22.(10分)如圖所示,第九屆亞洲機器人錦標賽VEX中國選拔賽永州賽區(qū)中,主辦方設計了一個矩形坐標場地ABCD(包含邊界和內部,A為坐標原點),AD長為10米,在AB邊上距離A點4米的F處放置一只電子狗,在距離A點2米的E處放置一個機器人,機器人行走速度為v,電子狗行走速度為,若電子狗和機器人在場地內沿直線方向同時到達場地內某點M,那么電子狗將被機器人捕獲,點M叫成功點.(1)求在這個矩形場地內成功點M的軌跡方程;(2)P為矩形場地AD邊上的一動點,若存在兩個成功點到直線FP的距離為,且直線FP與點M的軌跡沒有公共點,求P點橫坐標的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)雙曲線的離心率,求出即可得到結論【詳解】∵雙曲線的離心率是,∴,即1+,即1,則,即雙曲線的漸近線方程為,故選:B2、D【解析】由平面的基本性質結合公理即可判斷.【詳解】對于A,過不在一條直線上三點才能確定一個平面,故A不正確;對于B,經過一條直線和直線外一個點確定一個平面,故B不正確;對于C,空間四邊形不能確定一個平面,故C不正確;對于D,兩兩相交且不共點的三條直線確定一個平面,故D正確.故選:D3、A【解析】求出直線斜率,利用點斜式可得出直線的方程.【詳解】直線的斜率為,則直線的斜率為,故直線的方程為,即.故選:A.4、C【解析】根據(jù)等比數(shù)列的性質,可知等比數(shù)列的公比,所以成等比數(shù)列,根據(jù)等比的中項性質即可求出結果.【詳解】因為為等比數(shù)列的前項和,且,,易知等比數(shù)列的公比,所以成等比數(shù)列所以,所以,解得.故選:C5、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當時,,故故選:B6、A【解析】求出函數(shù)的導數(shù),利用導數(shù)的定義求解,然后求解切線的斜率即可【詳解】解:函數(shù),可得,,可得,即,所以,可得,解得,所以,所以曲線在點處的切線方程為故選:A7、B【解析】由公切線條數(shù)得兩圓外切,由此可得的關系,從而點在以原點為圓心,4為半徑的圓上,記,由求得的最小值,平方后即得結論【詳解】圓標準方程為,,半徑為,圓標準方程為,,半徑為,兩圓有三條公切線,則兩圓外切,所以,即,點在以原點為圓心,4為半徑的圓上,記,,所以,所以的最小值為故選:B8、C【解析】先設點,利用向量關系得到兩點坐標之間的關系,再結合點在橢圓上,代入方程,消去即得,根據(jù)題意,構建的齊次式,解不等式即得結果.【詳解】設,由得,,,即,由在橢圓上,故,即,消去得,,根據(jù)橢圓上點滿足,又兩點不同,可知,整理得,故,故.故選:C.【點睛】關鍵點點睛:圓錐曲線中離心率的計算,關鍵是根據(jù)題中條件,結合曲線性質,找到一組等量關系(齊次式),進而求解離心率或范圍.9、C【解析】由折線圖逐項分析得到答案.【詳解】對于選項A,從折線圖中可以直接觀察出甲地和乙地的指數(shù)有增有減,故選項A正確;對于選項B,從第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%,故選項B正確;對于選項C,從折線圖上可以看出這11天甲的增量大于乙的增量,故選項C錯誤;對于選項D,從折線圖上可以看出第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量,故D正確;故選:C.10、C【解析】根據(jù)組合數(shù)的性質可求解.【詳解】,或,即或.故選:C11、B【解析】根據(jù)題意,分2步進行分析區(qū)域①、②、⑤和區(qū)域③、④的涂色方法,由分步計數(shù)原理計算可得答案.【詳解】根據(jù)題意,分2步進行分析:當區(qū)域①、②、⑤這三個區(qū)域兩兩相鄰,有種涂色的方法;當區(qū)域③、④,必須有1個區(qū)域選第4種顏色,有2種選法,選好后,剩下的區(qū)域有1種選法,則區(qū)域③、④有2種涂色方法,故共有種涂色的方法.故選:B12、B【解析】設圓柱的底面半徑為,則圓柱底,圓柱側,則可得,則圓柱的體積為,利用導數(shù)求出最大值,確定值.【詳解】設圓柱的底面半徑為,則圓柱底,圓柱側,∴,∴,則圓柱的體積,∴,由得,由得,∴當時,取極大值,也是最大值,即故選:B【點睛】本題主要考查了圓柱表面積和體積的計算,考查了導數(shù)的實際應用,考查了學生的應用意識.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】本題利用拋物線的標準方程得出拋物線的準線方程【詳解】由拋物線方程可知,拋物線的準線方程為:故答案為【點睛】本題考查拋物線的相關性質,主要考查拋物線的簡單性質的應用,考查拋物線的準線的確定,是基礎題14、【解析】根據(jù)數(shù)列中與的關系,即可求出通項公式.【詳解】當時,,當時,,時,也適合,綜上,,(),故答案為:【點睛】本題主要考查了數(shù)列前n項和與通項間的關系,屬于容易題.15、【解析】對遞推關系多遞推一次,再相減,可得,再驗證是否滿足;【詳解】∵①時,②①-②得,時,滿足上式,.故答案為:.【點睛】數(shù)列中碰到遞推關系問題,經常利用多遞推一次再相減的思想方法求解.16、【解析】設直線與曲線相切的切點為,借助導數(shù)的幾何意義用表示出m,n即可作答.【詳解】設直線與曲線相切的切點為,而,則直線的斜率,于是得,即,由得,而,于是得,即因,則,,當且僅當時取“=”,所以的最小值為.故答案為:【點睛】結論點睛:函數(shù)y=f(x)是區(qū)間D上的可導函數(shù),則曲線y=f(x)在點處的切線方程為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)求導,利用導函數(shù)的幾何意義求解切線方程的斜率,進而求出切線方程;(2)對導函數(shù)再次求導,判斷其單調性,結合隱零點求出其最小值,列出方程,求出實數(shù)m的值.【小問1詳解】當時,因為,所以切線的斜率為,所以切線方程為,即.【小問2詳解】因為,令,因為,所以在上單調遞增,當實數(shù)時,,;當實數(shù)時,,;當實數(shù)時,,所以總存在一個,使得,且當時,;當時,,所以,令,因為,所以單調遞減,又,所以時,所以,即.18、(1);(2)或.【解析】(1)根據(jù)圓的弦長公式進行求解即可;(2)根據(jù)平行線的性質,結合直線與圓的位置關系進行求解即可.小問1詳解】因為圓的圓心在軸正半軸上、半徑為2,所以設方程為:,圓心,設圓心到直線的距離為,因為,所以有,或舍去,所以圓的標準方程為;【小問2詳解】由(1)可知:,圓的半徑為,因為直線,所以設直線的方程為,因為圓上僅有一個點到直線的距離為1,所以直線與該圓相離,當兩平行線間的距離為,于是有:,當時,圓心到直線的距離為:,符合題意;當時,圓心到直線的距離為::,不符合題意,此時直線的方程為.當兩平行線間的距離為,于是有:,當時,圓心到直線的距離為:,不符合題意;當時,圓心到直線的距離為::,不符合題意,此時直線的方程為.故直線方程為或.19、(1)80m;(2).【解析】(1)根據(jù)斜率的公式,結合解方程組法和兩點間距離公式進行求解即可;(2)根據(jù)圓的切線性質進行求解即可.【小問1詳解】由題意,可知,,∵∴直線BC方程:①,同理可得:直線AB方程:②由①②可知,∴,從而得故新橋BC得長度為80m【小問2詳解】設,則,圓心,∵直線BC與圓M相切,∴半徑,又因為,∵∴,所以當時,圓M的面積達到最小20、(1)(2)(3)【解析】(1)根據(jù)已知條件得到,,即可得到橢圓的方程.(2)首先設直線為,與橢圓聯(lián)立得到,根據(jù)得到的范圍,從而得到的范圍.(3)設重心,根據(jù)重心性質得到,,再代入求解即可.小問1詳解】因為左頂點,所以,根據(jù),可得,解得,所以;【小問2詳解】設直線為,則,則,,那么,根據(jù)解得,所以.【小問3詳解】設重心,則:,,所以,所以,即所求直線的斜率為.21、(1);(2).【解析】(1)由正弦定理化邊為角后,結合兩角和的正弦公式、誘導公式可求得;(2)用表示出,然后平方由數(shù)量積的運算求得向量的模(線段長度)【詳解】(1)因為,所以由正弦定理可得,即,因為,所以,,∵,故;(2)由,得,所以,所以.22、(1)(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學五年級小數(shù)乘除法計算題匯編
- 科創(chuàng)板開通知識測試參考答案
- 語文試卷 天津市濱海新區(qū)五所重點中學高三畢業(yè)班聯(lián)考語文試卷
- 保險行業(yè)助理的工作總結和技能要求
- 骨骼疾病護理工作總結
- 家具家居行業(yè)技術嘗試改造
- 生物醫(yī)藥行業(yè)技術工作總結
- 紙制品行業(yè)業(yè)務員工作總結
- 游戲界面設計師的交互體驗和游戲設計
- 《機械防煙方式》課件
- 小學語文-部編版四年級語文上冊第六單元習作:記一次游戲教學設計學情分析教材分析課后反思
- 面向5G網絡建設的站點供電技術應用與發(fā)展
- 裝飾公司與項目經理合作協(xié)議
- 接待上級領導工作總結
- 《新時代高校勞動教育理論與實踐教程》教案 第9課 強化勞動安全意識
- 小學數(shù)學項目化教學這:基于教學評一體化的大單元整體設計《測量》
- 洗滌劑常用原料
- ACC-AHA-HRSICD治療適應證指南
- 曼陀羅中毒課件
- 共享單車電動車加盟城市代理協(xié)議模板
- 2024年上海市交大附中嘉定高二物理第一學期期末達標檢測試題含解析
評論
0/150
提交評論