河北省滄州市滄縣中學2025屆高二上數學期末綜合測試試題含解析_第1頁
河北省滄州市滄縣中學2025屆高二上數學期末綜合測試試題含解析_第2頁
河北省滄州市滄縣中學2025屆高二上數學期末綜合測試試題含解析_第3頁
河北省滄州市滄縣中學2025屆高二上數學期末綜合測試試題含解析_第4頁
河北省滄州市滄縣中學2025屆高二上數學期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省滄州市滄縣中學2025屆高二上數學期末綜合測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某學習小組研究一種衛(wèi)星接收天線(如圖①所示),發(fā)現其曲面與軸截面的交線為拋物線,在軸截面內的衛(wèi)星波束呈近似平行狀態(tài)射入形為拋物線的接收天線,經反射聚焦到焦點處(如圖②所示).已知接收天線的口徑(直徑)為3.6m,深度為0.6m,則該拋物線的焦點到頂點的距離為()A.1.35m B.2.05mC.2.7m D.5.4m2.如圖,、分別為橢圓的左、右焦點,為橢圓上的點,是線段上靠近的三等分點,為正三角形,則橢圓的離心率為()A. B.C. D.3.若點在橢圓的外部,則的取值范圍為()A. B.C. D.4.已知,,,其中,,,則()A. B.C. D.5.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.6.已知定義域為R的函數f(x)不是偶函數,則下列命題一定為真命題的是()A.?x∈R,f(-x)≠f(x)B.?x∈R,f(-x)≠-f(x)C?x0∈R,f(-x0)≠f(x0)D.?x0∈R,f(-x0)≠-f(x0)7.焦點在軸的正半軸上,且焦點到準線的距離為的拋物線的標準方程是()A. B.C. D.8.120°的二面角的棱上有A,B兩點,直線AC,BD分別在這個二面角的兩個半平面內,且都垂直于AB.已知,,,則CD的長為()A. B.C. D.9.已知直線和互相垂直,則實數的值為()A. B.C.或 D.10.若空間中n個不同的點兩兩距離都相等,則正整數n的取值A.至多等于3 B.至多等于4C.等于5 D.大于511.已知拋物線的焦點與橢圓的右焦點重合,則拋物線的準線方程為()A. B.C. D.12.圓與圓的位置關系是()A.相離 B.內含C.相切 D.相交二、填空題:本題共4小題,每小題5分,共20分。13.已知正方體,點在底面內運動,且始終保持平面,設直線與底面所成的角為,則的最大值為______.14.甲、乙兩隊進行籃球決賽,采取七場四勝制(當一隊贏得四場勝利時,該隊獲勝,決賽結束).根據前期比賽成績,甲隊的主客場安排依次為“主主客客主客主”.設甲隊主場取勝的概率為0.6,客場取勝的概率為0.5,且各場比賽結果相互獨立,則甲隊以4∶1獲勝的概率是____________15.已知直線與曲線,在曲線上隨機取一點,則點到直線的距離不大于的概率為__________.16.萬眾矚目的北京冬奧會將于2022年2月4日正式開幕,繼2008年北京奧運會之后,國家體育場(又名鳥巢)將再次承辦奧運會開幕式.在手工課上,王老師帶領同學們一起制作了一個近似鳥巢的金屬模型,其俯視圖可近似看成是兩個大小不同、扁平程度相同的橢圓.已知大橢圓的長軸長為40cm,短軸長為20cm,小橢圓的短軸長為10cm,則小橢圓的長軸長為________cm.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面滿足,,底面,且,.(1)證明平面;(2)求平面與平面的夾角.18.(12分)已知數列{an}是一個等差數列,且a2=1,a5=-5.(1)求{an}的通項an;(2)求{an}前n項和Sn的最大值19.(12分)已知橢圓經過點,橢圓E的一個焦點為.(1)求橢圓E的方程;(2)若直線l過點且與橢圓E交于兩點.求的最大值.20.(12分)已知雙曲線,直線l與交于P、Q兩點(1)若點是雙曲線的一個焦點,求的漸近線方程;(2)若點P的坐標為,直線l的斜率等于1,且,求雙曲線的離心率21.(12分)已知函數.(1)討論函數的單調性;(2)若恒成立,求實數的取值范圍.22.(10分)甲、乙兩人參加普法知識競賽,共有5題,選擇題(1)甲、乙兩人中有一個抽到選擇題(2)甲、乙兩人中至少有一人抽到選擇題

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據題意先建立恰當的坐標系,可設出拋物線方程,利用已知條件得出點在拋物線上,代入方程求得p值,進而求得焦點到頂點的距離.【詳解】如圖所示,在接收天線的軸截面所在平面上建立平面直角坐標系xOy,使接收天線的頂點(即拋物線的頂點)與原點O重合,焦點F在x軸上設拋物線的標準方程為,由已知條件可得,點在拋物線上,所以,解得,因此,該拋物線的焦點到頂點的距離為1.35m,故選:A.2、D【解析】根據橢圓定義及正三角形的性質可得到\,再在中運用余弦定理得到、的關系,進而求得橢圓的離心率【詳解】由橢圓的定義知,,則,因為正三角形,所以,在中,由余弦定理得,則,,故選:D【點睛】本題考查橢圓的離心率的求解,考查考生的邏輯推理能力及運算求解能力,屬于中等題.3、B【解析】根據題中條件,得到,求解,即可得出結果.【詳解】因為點在橢圓的外部,所以,即,解得或.故選:B.4、C【解析】先令函數,求導判斷函數的單調性,并作出函數的圖像,由函數的單調性判斷,再由對稱性可得.【詳解】由,則,同理,,令,則,當;當,∴在上單調遞減,單調遞增,所以,即可得,又,,由圖的對稱性可知,.故選:C5、A【解析】利用三角形正弦定理結合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A6、C【解析】利用偶函數的定義和全稱命題的否定分析判斷解答.【詳解】∵定義域為R的函數f(x)不是偶函數,∴?x∈R,f(-x)=f(x)為假命題,∴?x0∈R,f(-x0)≠f(x0)為真命題.故選C【點睛】本題主要考查偶函數的定義和全稱命題的否定,意在考查學生對該知識的理解掌握水平,屬于基礎題.7、A【解析】直接由焦點位置及焦點到準線的距離寫出標準方程即可.【詳解】由焦點在軸的正半軸上知拋物線開口向上,又焦點到準線的距離為,故拋物線的標準方程是.故選:A.8、B【解析】由,把展開整理求解【詳解】由已知可得:,,,,=41,∴.故選:B9、B【解析】由兩直線垂直可得出關于實數的等式,求解即可.【詳解】由已知可得,解得.故選:B.10、B【解析】先考慮平面上的情況:只有三個點的情況成立;再考慮空間里,只有四個點的情況成立,注意運用外接球和三角形三邊的關系,即可判斷解:考慮平面上,3個點兩兩距離相等,構成等邊三角形,成立;4個點兩兩距離相等,由三角形的兩邊之和大于第三邊,則不成立;n大于4,也不成立;空間中,4個點兩兩距離相等,構成一個正四面體,成立;若n>4,由于任三點不共線,當n=5時,考慮四個點構成的正四面體,第五個點,與它們距離相等,必為正四面體的外接球的球心,由三角形的兩邊之和大于三邊,故不成立;同理n>5,不成立故選B點評:本題考查空間幾何體的特征,主要考查空間兩點的距離相等的情況,注意結合外接球和三角形的兩邊與第三邊的關系,屬于中檔題和易錯題11、C【解析】先求出橢圓的右焦點,從而可求拋物線的準線方程.【詳解】,橢圓右焦點坐標為,故拋物線的準線方程為,故選:C.【點睛】本題考查拋物線的幾何性質,一般地,如果拋物線的方程為,則拋物線的焦點的坐標為,準線方程為,本題屬于基礎題.12、D【解析】先由圓的方程得出兩圓的圓心坐標和半徑,求出兩圓心間的距離與兩半徑之和與差比較可得答案.【詳解】圓的圓心為,半徑為圓的圓心為,半徑為兩圓心間的距離為由,所以兩圓相交.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】畫出立體圖形,因為面面,在底面內運動,且始終保持平面,可得點在線段上運動,因為面面,直線與底面所成的角和直線與底面所成的角相等,即可求得答案.【詳解】連接和,面面在底面內運動,且始終保持平面可得點在線段上運動,面面,直線與底面所成的角和直線與底面所成的角相等面直線與底面所成的角為:有圖像可知:長是定值,當最短時,,即最大,即角最大設正方體的邊長為,故故答案為:【點睛】本題考查了求線面角的最大值,解題是掌握線面角的定義和處理動點問題時,應畫出圖形,尋找?guī)缀侮P系,考查了分析能力和計算能力,屬于難題.14、18【解析】本題應注意分情況討論,即前五場甲隊獲勝的兩種情況,應用獨立事件的概率的計算公式求解.題目有一定的難度,注重了基礎知識、基本計算能力及分類討論思想的考查【詳解】前四場中有一場客場輸,第五場贏時,甲隊以獲勝的概率是前四場中有一場主場輸,第五場贏時,甲隊以獲勝的概率是綜上所述,甲隊以獲勝的概率是【點睛】由于本題題干較長,所以,易錯點之一就是能否靜心讀題,正確理解題意;易錯點之二是思維的全面性是否具備,要考慮甲隊以獲勝的兩種情況;易錯點之三是是否能夠準確計算15、【解析】畫出示意圖,根據圖形分析可知點在陰影部分所對的劣弧上,由幾何概型可求出.【詳解】作出示意圖曲線是圓心為原點,半徑為2的一個半圓.圓心到直線距離,而點到直線的距離為,故若點到直線的距離不大于,則點在陰影部分所對的劣弧上,由幾何概型的概率計算公式知,所求概率為.故答案為:.【點睛】本題考查幾何概型的概率計算,屬于中檔題.16、20【解析】求出大橢圓的離心率等于小橢圓的離心率,然后求解小橢圓的長軸長【詳解】在大橢圓中,,,則,.因為兩橢圓扁平程度相同,所以離心率相等,所以在小橢圓中,,結合,得,所以小橢圓的長軸長為20.故填:20.【點睛】本題考查橢圓的簡單性質的應用,對橢圓相似則離心率相等這一基礎知識的考查三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由已知結合線面平行判定定理可得;(2)建立空間直角坐標系,由向量法可解.【小問1詳解】∵,,∴,又平面,平面,∴平面;【小問2詳解】∵平面且、平面,∴,,又∵,故分別以所在直線為軸,軸、軸,建立如圖空間直角坐標系,如圖所示:由,,可得:,,,,,由已知平面,平面,,,,,平面,所以平面,為平面的一個法向量,且;設為平面的一個法向量,則,,,,,,,令,則,,,設平面與平面的夾角大小為,,由得:平面與平面的夾角大小為18、(1)an=-2n+5.(2)4【解析】(Ⅰ)設{an}的公差為d,由已知條件,,解出a1=3,d=-2所以an=a1+(n-1)d=-2n+5(Ⅱ)Sn=na1+d=-n2+4n=-(n-2)2+4,所以n=2時,Sn取到最大值419、(1)(2)【解析】(1)設橢圓的左,右焦點分別為,.利用橢圓的定義求出,然后求解,得到橢圓方程;(2)當直線的斜率存在時,設,,,,,聯立直線與橢圓方程,利用韋達定理以及弦長公式得到弦長的表達式,再通過換元利用二次函數的性質求解最值即可【小問1詳解】依題意,設橢圓的左,右焦點分別為,則,,,,橢圓的方程為【小問2詳解】當直線的斜率存在時,設,,,,由得由得由,得設,則,當直線的斜率不存在時,,的最大值為20、(1)(2)或【解析】(1)根據題意可得,又因為且,解得,可得雙曲線方程,進而可得的漸近線方程(2)設直線的方程為:,,,聯立直線與雙曲線方程,可得關于的一元二次方程,由韋達定理可得,,再由兩點之間距離公式得,解得,進而由可求出,即可求得離心率.【小問1詳解】∵點是雙曲線的一個焦點,∴,又∵且,解得,∴雙曲線方程為,∴的漸近線方程為:;小問2詳解】設直線的方程為,且,,聯立,可得,則,∴,即,∴,解得或,即由可得或,故雙曲線的離心率或.21、(1)當時,上單調遞增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞減,在上單調遞增.(2)【解析】(1)先求函數的定義域,再求導,根據導數即可求出函數的單調區(qū)間;(2)根據(1)的結論,分別求時的最小值,令,即可求出實數的取值范圍.【小問1詳解】易知函數的定義域為,,當時,,所以在上單調遞增;當時,,令,得;令,得,所以在上單調遞減,在上單調遞增;當時,,令,得;令,得,所以在上單調遞減,在上單調遞增.【小問2詳解】當時,成立,所以符合題意;當時,在上單

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論