版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省啟東市2025屆高二上數(shù)學期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個袋中裝有大小和質(zhì)地相同的5個球,其中有2個紅色球,3個綠色球,從袋中不放回地依次隨機摸出2個球,下列結(jié)論正確的是()A.第一次摸到綠球的概率是 B.第二次摸到綠球的概率是C.兩次都摸到綠球的概率是 D.兩次都摸到紅球的概率是2.已知集合A={1,a,b},B={a2,a,ab},若A=B,則a2021+b2020=()A.-1 B.0C.1 D.23.雙曲線的光學性質(zhì)如下:如圖1,從雙曲線右焦點發(fā)出的光線經(jīng)雙曲線鏡面反射,反射光線的反向延長線經(jīng)過左焦點.我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個光學性質(zhì).某“雙曲線燈”的軸截面是雙曲線一部分,如圖2,其方程為,分別為其左、右焦點,若從右焦點發(fā)出的光線經(jīng)雙曲線上的點A和點B反射后(,A,B在同一直線上),滿足,則該雙曲線的離心率的平方為()A. B.C. D.4.直線分別與軸,軸交于A,B兩點,點在圓上,則面積的取值范圍是()A B.C. D.5.已知雙曲線C的離心率為,,是C的兩個焦點,P為C上一點,,若△的面積為,則雙曲線C的實軸長為()A.1 B.2C.4 D.66.如圖已知正方體,點是對角線上的一點且,,則()A.當時,平面 B.當時,平面C.當為直角三角形時, D.當?shù)拿娣e最小時,7.展開式的第項為()A. B.C. D.8.已知橢圓的左、右焦點分別為,,點P是橢圓上一點且的最大值為,則橢圓離心率為()A. B.C. D.9.已知等比數(shù)列的前3項和為3,,則()A. B.4C. D.110.已知為偶函數(shù),且當時,,其中為的導數(shù),則不等式的解集為()A. B.C. D.11.如圖,在正方體中,,,,若為的中點,在上,且,則等于()A. B.C. D.12.若傾斜角為的直線過兩點,則實數(shù)()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等差數(shù)列中,前n項和記作,若,則______14.已知,空間直角坐標系中,過點且一個法向量為的平面的方程為.用以上知識解決下面問題:已知平面的方程為,直線是兩個平面與的交線,則直線與平面所成角的正弦值為___________.15.已知點,,其中,若線段的中點坐標為,則直線的方程為________16.雙曲線的左焦點到直線的距離為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)自2021年秋季起,江西省普通高中起始年級全面實施新課程改革,為了迎接新高考,某校舉行物理和化學等選科考試,其中600名學生化學成績(滿分100分)的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:第一組,第二組,第三組,第四組,第五組.已知圖中前三個組的頻率依次構(gòu)成等差數(shù)列,第一組和第五組的頻率相同(1)求a,b的值;(2)估算高分(大于等于80分)人數(shù);(3)估計這600名學生化學成績的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)和中位數(shù)(中位數(shù)精確到0.1)18.(12分)如圖1,已知正方形的邊長為,分別為的中點,將正方形沿折成如圖2所示的二面角,點在線段上(含端點)運動,連接(1)若為的中點,直線與平面交于點,確定點位置,求線段的長;(2)若折成二面角大小為,是否存在點M,使得直線與平面所成的角為,若存在,確定出點的位置;若不存在,請說明理由19.(12分)某話劇表演小組由名學生組成,若從這名學生中任意選取人,其中恰有名男生的概率是.(1)求該小組中男、女生各有多少人?(2)若這名學生站成一排照相留念,求所有排法中男生不相鄰的概率.20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當時,求函數(shù)在內(nèi)的零點個數(shù).21.(12分)在直三棱柱中,、、、分別為中點,.(1)求證:平面(2)求二面角的余弦值22.(10分)已知二次曲線的方程:(1)分別求出方程表示橢圓和雙曲線的條件;(2)若雙曲線與直線有公共點且實軸最長,求雙曲線方程;(3)為正整數(shù),且,是否存在兩條曲線,其交點P與點滿足,若存在,求的值;若不存在,說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】對選項A,直接求出第一次摸球且摸到綠球的概率;對選項B,第二次摸到綠球分兩種情況,第一次摸到綠球且第二也摸到綠球和第一次摸到紅球且第二次摸到綠球;對選項C,直接求出第一次摸到綠球且第二也摸到綠球的概率;對選項D,直接求出第一次摸到紅球且第二也摸到紅球的概率【詳解】對選項A,第一次摸到綠球的概率為:,故錯誤;對選項B,第二次摸到綠球的概率為:,故錯誤;對選項C,兩次都摸到綠球的概率為:,故正確;對選項D,兩次都摸到紅球的概率為:,故錯誤故選:C2、A【解析】根據(jù)A=B,可得兩集合元素全部相等,分別求得和ab=1兩種情況下,a,b的取值,分析討論,即可得答案.【詳解】因為A=B,若,解得,當時,不滿足互異性,舍去,當時,A={1,-1,b},B={1,-1,-b},因為A=B,所以,解得,所以;若ab=1,則,所以,若,解得或1,都不滿足題意,舍去,若,解得,不滿足互異性,舍去,故選:A【點睛】本題考查兩集合相等的概念,在集合相等問題中由一個條件求出參數(shù)后需進行代入檢驗,檢驗是否滿足互異性、題設條件等,屬基礎題.3、D【解析】設,根據(jù)題意可得,由雙曲線定義得、,進而求出(用表示),然后在中,應用勾股定理得出關(guān)系,求得離心率【詳解】易知共線,共線,如圖,設,則.因為,所以,則,則,又因為,所以,則,在中,,即,所以.故選:D4、A【解析】把求面積轉(zhuǎn)化為求底邊和底邊上的高,高就是圓上點到直線的距離.【詳解】與x,y軸的交點,分別為,,點在圓,即上,所以,圓心到直線距離為,所以面積的最小值為,最大值為.故選:A5、C【解析】由已知條件可得,,,再由余弦定理得,進而求其正弦值,最后利用三角形面積公式列方程求參數(shù)a,即可知雙曲線C的實軸長.【詳解】由題意知,點P在右支上,則,又,∴,,又,∴,則在△中,,∴,故,解得,∴實軸長為,故選:C.6、D【解析】建立空間直角坐標系,利用空間向量法一一計算可得;【詳解】解:由題可知,如圖令正方體的棱長為1,建立空間直角坐標系,則,,,,,,,所以,因為,所以,所以,,,,設平面的法向量為,則,令,則,,所以對于A:若平面,則,則,解得,故A錯誤;對于B:若平面,則,即,解得,故B錯誤;當為直角三角形時,有,即,解得或(舍去),故C錯誤;設到的距離為,則,當?shù)拿娣e最小時,,故正確故選:7、B【解析】由展開式的通項公式求解即可【詳解】因為,所以展開式的第項為,故選:B8、A【解析】根據(jù)橢圓的定義可得,從而得到,則,其中,再根據(jù)對勾函數(shù)的性質(zhì)求出,即可得到方程,從求出橢圓的離心率;【詳解】解:依題意,所以,又,所以,因為在上單調(diào)遞減,所以當時函數(shù)取得最大值,即,即所以,即,所以,解得或(舍去)故選:A9、D【解析】設等比數(shù)列公比為,由已知結(jié)合等比數(shù)列的通項公式可求得,,代入即可求得結(jié)果.【詳解】設等比數(shù)列的公比為,由,得即,又,即又,,解得又等比數(shù)列的前3項和為3,故,即,解得故選:D10、A【解析】根據(jù)已知不等式和要求解的不等式特征,構(gòu)造函數(shù),將問題轉(zhuǎn)化為解不等式.通過已知條件研究g(x)的奇偶性和單調(diào)性即可解該不等式.【詳解】令,則根據(jù)題意可知,,∴g(x)是奇函數(shù),∵,∴當時,,單調(diào)遞減,∵g(x)是奇函數(shù),g(0)=0,∴g(x)在R上單調(diào)遞減,由不等式得,.故選:A.11、B【解析】利用空間向量的加減法、數(shù)乘運算推導即可.【詳解】.故選:B.12、A【解析】解方程即得解.【詳解】解:由題得.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、16【解析】根據(jù)等差數(shù)列前項和公式及下標和性質(zhì)以及通項公式計算可得;【詳解】解:因為,所以,即,所以,所以,所以;故答案為:14、【解析】由題意分別求出這三個平面的法向量,設直線的方向向量為,由直線與平面與的法向量垂直,得出,由向量的夾角公式可得答案.【詳解】由,解得,即直線與平面的交點坐標為平面的方程為,可得所以平面的法向量為平面的法向量為,的法向量為設直線的方向向量為,則,即取,設直線與平面所成角則故答案為:15、【解析】根據(jù)中點坐標公式求出,再根據(jù)直線的兩點式方程即可得出答案.【詳解】解:由,,得線段的中點坐標為,所以,解得,所以直線的方程為,即.故答案為:.16、【解析】根據(jù)雙曲線方程求得左焦點的坐標,利用點到直線的距離公式即可求得結(jié)果.【詳解】因為雙曲線的方程為,設其左焦點的坐標為,故可得,解得,故左焦點的坐標為,則其到直線的距離.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)90(3)平均值69.5;中位數(shù)69.4【解析】(1)由各矩形面積和為1列式即可;(2)由高分頻率乘以600即可;(3)由平均數(shù)與中位數(shù)的估算方法列式即可.【小問1詳解】由題意可知:解得小問2詳解】高分的頻率約為:故高分人數(shù)為:【小問3詳解】平均值為,設中位數(shù)為x,則故中位數(shù)為69.418、(1)是的延長線與延長線的交點,且(2)存在,使得直線與平面所成的角為,且.【解析】(1)通過延長、以及全等三角形確定點的位置并求得線段的長.(2)建立空間直角坐標系,利用向量法判斷符合題意的點是否存在.【小問1詳解】延長,連接并延長,交的延長線于,由于,所以,所以.所以是的延長線與延長線的交點,且.【小問2詳解】由于,所以平面,,由于平面,所以平面平面.建立如圖所示空間直角坐標系,,設,,設平面的法向量為,則,故可設,由于直線與平面所成的角為,所以,整理得,解得或(舍去)存在,使得直線與平面所成的角為,且.19、(1)男生人數(shù)為,女生人數(shù)為;(2).【解析】(1)設男生的人數(shù)為,則女生人數(shù)為,且,根據(jù)組合計數(shù)原理結(jié)合古典概型的概率公式可求得的值,即可得解;(2)利用插空法結(jié)合古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:設男生的人數(shù)為,則女生人數(shù)為,且,由已知可得,即,因為且,解得,所以,該小組中男生人數(shù)為,女生人數(shù)為.【小問2詳解】解:若男生不相鄰,則先將女生全排,然后在女生所形成的個空中選個空插入男生,因此,所有排法中男生不相鄰的概率為.20、(1)當,在單調(diào)遞增;當,在單調(diào)遞增,在單調(diào)遞減.(2)0.【解析】(1)求得,對參數(shù)分類討論,即可由每種情況下的正負確定函數(shù)的單調(diào)性;(2)根據(jù)題意求得,利用進行放縮,只需證即,再利用導數(shù)通過證明從而得到恒成立,則問題得解.【小問1詳解】以為,其定義域為,又,故當時,,在單調(diào)遞增;當時,令,可得,且令,解得,令,解得,故在單調(diào)遞增,在單調(diào)遞減.綜上所述:當,在單調(diào)遞增;當,在單調(diào)遞增,在單調(diào)遞減.【小問2詳解】因為,故可得,則,;下證恒成立,令,則,故在單調(diào)遞減,又當時,,故在恒成立,即;因為,故,令,下證在恒成立,要證恒成立,即證,又,故即證,令,則,令,解得,此時該函數(shù)單調(diào)遞增,令,解得,此時該函數(shù)單調(diào)遞減,又當時,,也即;令,則,令,解得,此時該函數(shù)單調(diào)遞減,令,解得,此時該函數(shù)單調(diào)遞增,又當時,,也即;又,故恒成立,則在恒成立,又,故當時,恒成立,則在上的零點個數(shù)是.【點睛】本題考察利用導數(shù)研究含參函數(shù)的單調(diào)性,以及函數(shù)零點問題的處理;本題第二問處理的關(guān)鍵是通過分離參數(shù)和構(gòu)造函數(shù),證明恒成立,屬綜合困難題.21、(1)見解析;(2)【解析】(1)取中點,連接,根據(jù)直棱柱的特征,易知,再由、分別為的中點,根據(jù)中位線定理,可得,得到四邊形為平行四邊形,再利用線面平行的判定定理證明.(2)取的中點,連接,以為原點,、、分別為、、軸建立空間直角坐標系,則.,再分別求得平面和平面的一個法向量,利用面面角的向量公式求解.【詳解】(1)證明:如圖所示:取中點,連接,易知,、分別為的中點,∴,∴故四邊形為平行四邊形,∴,∵平面,平面,平面(2)取的中點,連接,以為原點,、、分別為、、軸建立如圖所示的空間直角坐標系,如圖所示:則∴,設平面的法向量為,則,即,取,得,易知平面的一個法向量為,∴,∴二面角的余弦值為【點睛】本題主要考查線面平行的判定定理和面面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.22、(1)時,方程表示橢圓,時,方程表示雙曲線;(2);(3)存在,且或或.【解析】(1)當且僅當分母都為正,且不相等時,方程表示橢圓;當且僅當分母異號時,方程表示雙曲線(2)將直線與曲線聯(lián)立化簡得:,利用雙曲線與直線有公共點,可確定的范圍,從而可求雙曲線的實軸,進而可得雙曲線方程;(3)由(1)知,,是橢
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- YC/T 618-2024卷煙物流配送中心作業(yè)動線管理指南
- 2025年度周轉(zhuǎn)材料租賃與施工現(xiàn)場臨時設施建設合同3篇
- 特定行業(yè)招聘代理合同
- 廢溶劑處理廠房建設施工合同
- 電影演員經(jīng)紀人合作合同
- 建筑機電升級浮動價施工合同
- 石油天然氣開采用地管理辦法
- 2025版科技園區(qū)廠房租賃及研發(fā)支持協(xié)議3篇
- 釀酒師聘用合同協(xié)議
- 老年公寓空置房間租賃協(xié)議
- 創(chuàng)業(yè)基礎(浙江財經(jīng)大學)智慧樹知到期末考試答案章節(jié)答案2024年浙江財經(jīng)大學
- 上海市2024-2025學年高一語文下學期分科檢測試題含解析
- 佛山市2022-2023學年七年級上學期期末考試數(shù)學試題【帶答案】
- 使用權(quán)資產(chǎn)實質(zhì)性程序
- 保險公司增額終身壽主講課件
- 手術(shù)室二氧化碳應急預案及流程
- 靜配中心PIVAS標準操作流程培訓
- 期末檢測卷(試題)-2023-2024學年五年級上冊數(shù)學北師大版
- 八年級上學期數(shù)學教學反思6篇
- 兒童文學概論(第二版) 課件 第4、5章 外國兒童文學概述、兒童文學的各種文體
- 消化系統(tǒng)疾病健康宣教
評論
0/150
提交評論