版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆江蘇省大豐市南陽中學(xué)高二上數(shù)學(xué)期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正方體中,分別為棱的中點,則直線與所成角的余弦值為()A. B.C. D.2.已知是拋物線上的點,F(xiàn)是拋物線C的焦點,若,則()A1011 B.2020C.2021 D.20223.已知橢圓:,左、右焦點分別為,過的直線交橢圓于兩點,若的最大值為5,則的值是A.1 B.C. D.4.早在古希臘時期,亞歷山大的科學(xué)家赫倫就發(fā)現(xiàn):光從一點直接傳播到另一點選擇最短路徑,即這兩點間的線段.若光從一點不是直接傳播到另一點,而是經(jīng)由一面鏡子(即便鏡面是曲面)反射到另一點,仍然選擇最短路徑.已知曲線,且將假設(shè)為能起完全反射作用的曲面鏡,若光從點射出,經(jīng)由上一點反射到點,則()A. B.C. D.5.設(shè)變量滿足約束條件,則的最大值為()A.0 B.C.3 D.46.已知直線經(jīng)過點,且是的方向向量,則點到的距離為()A. B.C. D.7.已知雙曲線的左、右焦點分別為,點A在雙曲線上,且軸,若則雙曲線的離心率等于()A. B.C.2 D.38.已知向量,,且與互相垂直,則k的值是().A.1 B.C. D.9.已知點是橢圓上的任意一點,過點作圓:的切線,設(shè)其中一個切點為,則的取值范圍為()A. B.C. D.10.在中,角、、的對邊分別是、、,若.則的大小為()A. B.C. D.11.命題“,”的否定形式是()A.“,” B.“,”C.“,” D.“,”12.在空間直角坐標(biāo)系中,已知點A(1,1,2),B(-3,1,-2),則線段AB的中點坐標(biāo)是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)二、填空題:本題共4小題,每小題5分,共20分。13.命題“x≥1,x2-2x+4≥0”的否定為____________.14.已知雙曲線,的左、右焦點分別為、,且的焦點到漸近線的距離為1,直線與交于,兩點,為弦的中點,若為坐標(biāo)原點)的斜率為,,則下列結(jié)論正確的是____________①;②的離心率為;③若,則的面積為2;④若的面積為,則為鈍角三角形15.已知原命題為“若,則”,則它的逆否命題是__________(填寫”真命題”或”假命題”)16.__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足(1)求;(2)若,且數(shù)列的前n項和為,求證:18.(12分)中,三內(nèi)角A,B,C所對的邊分別為a,b,c,已知(1)求角A;(2)若,角A的角平分線交于D,,求a19.(12分)設(shè)是首項為的等差數(shù)列的前項和,是首項為1的等比數(shù)列的前項和,為數(shù)列的前項和,為數(shù)列的前項和,已知.(1)若,求;(2)若,求.20.(12分)在①成等差數(shù)列;②成等比數(shù)列;③這三個條件中任選一個,補充在下面的問題中,并對其求解.問題:已知為數(shù)列的前項和,,且___________.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.注:如果選擇多個條件分別解答,按第一個解答計分.21.(12分)已知數(shù)列的前n項和為,且.(1)求的通項公式;.(2)求數(shù)列的前n項和.22.(10分)已知函數(shù)(1)求函數(shù)在點處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間及極值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】以D為原點建立空間直角坐標(biāo)系,求出E,F,B,D1點的坐標(biāo),利用直線夾角的向量求法求解【詳解】如圖,以D為原點建立空間直角坐標(biāo)系,設(shè)正方體的邊長為2,則,,,,,直線與所成角的余弦值為:.故選D【點睛】本題主要考查了空間向量的應(yīng)用及向量夾角的坐標(biāo)運算,屬于基礎(chǔ)題2、C【解析】結(jié)合向量坐標(biāo)運算以及拋物線的定義求得正確答案.【詳解】設(shè),因為是拋物線上的點,F(xiàn)是拋物線C的焦點,所以,準(zhǔn)線為:,因此,所以,即,由拋物線的定義可得,所以故選:C3、D【解析】由題意可知橢圓是焦點在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過橢圓焦點的弦中通徑的長最短,可知當(dāng)AB垂直于x軸時|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【詳解】由0<b<2可知,焦點在x軸上,∵過F1的直線l交橢圓于A,B兩點,則|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|當(dāng)AB垂直x軸時|AB|最小,|BF2|+|AF2|值最大,此時|AB|=b2,則5=8﹣b2,解得b,故選D【點睛】本題考查直線與圓錐曲線的關(guān)系,考查了橢圓的定義,考查橢圓的通徑公式,考查計算能力,屬于中檔題4、B【解析】記橢圓的右焦點為,根據(jù)橢圓定義,得到,由題中條件,確定本題的本質(zhì)即是求的最小值,結(jié)合題中數(shù)據(jù),即可求出結(jié)果.【詳解】記橢圓的右焦點為,根據(jù)橢圓的定義可得,,所以,因為,當(dāng)且僅當(dāng)三點共線時,,即;由題意可得,求的值,即是求最短路徑,即求的最小值,所以的最小值為,因此.故選:B.【點睛】思路點睛:求解橢圓上動點到一焦點和一定點距離和的最小值或差的最大值時,一般需要利用橢圓的定義,將問題轉(zhuǎn)化為動點與另一焦點以及該定點距離和的最值問題來求解即可.5、A【解析】先畫出約束條件所表示的平面區(qū)域,然后根據(jù)目標(biāo)函數(shù)的幾何意義,即可求出目標(biāo)函數(shù)的最大值.【詳解】解:滿足約束條件的可行域如下圖所示:由,可得,因為目標(biāo)函數(shù),即,表示斜率為,截距為的直線,由圖可知,當(dāng)直線經(jīng)過時截距取得最小值,即取得最大值,所以的最大值為,故選:A.6、B【解析】求出,根據(jù)點到直線的距離的向量公式進(jìn)行求解.【詳解】因為,為的一個方向向量,所以點到直線的距離.故選:B7、B【解析】由雙曲線定義結(jié)合通徑公式、化簡得出,最后得出離心率.【詳解】,,,解得故選:B8、D【解析】利用向量的數(shù)量積為0可求的值.【詳解】因與互相垂直,故,故即,故.故選:D.9、B【解析】設(shè),得到,利用橢圓的范圍求解.【詳解】解:設(shè),則,,,因為,所以,即,故選:B10、B【解析】利用余弦定理結(jié)合角的范圍可求得角的值,再利用三角形的內(nèi)角和定理可求得的值.【詳解】因為,則,則,由余弦定理可得,因為,則,故.故選:B.11、C【解析】由全稱命題的否定是特稱命題即得.【詳解】“任意”改為“存在”,否定結(jié)論即可.命題“,”的否定形式是“,”.故選:C.12、B【解析】利用中點坐標(biāo)公式直接求解【詳解】在空間直角坐標(biāo)系中,點,1,,,1,,則線段的中點坐標(biāo)是,,,1,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)還有一個量詞的命題的否定的方法解答即可.【詳解】命題“x≥1,x2-2x+4≥0”的否定為“”.故答案為:.14、②④【解析】由已知可得,可求,,從而判斷①②,求出△的面積可判斷③,設(shè),,利用面積求出點的坐標(biāo),再求邊長,求出可判斷④【詳解】解:設(shè),,,,可得,,兩式相減可得,由題意可得,且,,,,,,故②正確;的焦點到漸近線的距離為1,設(shè)到漸近線的距離為,則,即,,故①錯誤,,若,不妨設(shè)在右支上,,又,,則的面積為,故③不正確;設(shè),,,,將代入雙曲線,得,,根據(jù)雙曲線的對稱性,不妨取點的坐標(biāo)為,,,,,為鈍角,為鈍角三角形.故④正確故答案為:②④15、真命題【解析】先判斷原命題的真假,再由逆否命題與原命題是等價命題判斷.【詳解】因為命題“若,則”是真命題,且逆否命題與原命題是等價命題,所以它的逆否命題是真命題,故答案為:真命題16、【解析】先由題得到,再整體代入化簡即得解.【詳解】因為,所以,則故答案為【點睛】本題主要考查差角的正切公式,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)先求得,猜想,然后利用數(shù)學(xué)歸納法進(jìn)行證明.(2)利用放縮法證得結(jié)論成立.【小問1詳解】依題意,,,,猜想,下面用數(shù)學(xué)歸納法進(jìn)行證明:當(dāng)時,結(jié)論成立,假設(shè)當(dāng)時結(jié)論成立,即,由,,所以當(dāng)時,有,結(jié)論成立,所以當(dāng)時,.【小問2詳解】由(1)得,且為單調(diào)遞增數(shù)列,所以.所以.18、(1)(2)【解析】(1)根據(jù)正弦定理統(tǒng)一三角函數(shù)化簡即可求解;(2)根據(jù)角平分線建立三角形面積方程求出b,再由余弦定理求解即可.【小問1詳解】由及正弦定理,得∵,∴∵,∴∵,∴【小問2詳解】∵,∴,解得由余弦定理,得,∴.19、(1)或(2)【解析】(1)列方程組解得等差數(shù)列的公差,即可求得其前項和;(2)列方程組解得等差數(shù)列的公差和等比數(shù)列的公比,以錯位相減法即可求得數(shù)列的前項和.【小問1詳解】設(shè)的公差為,的公比為,則,,因為即,解之得或,又因為,得所以或,故,或【小問2詳解】因為,所以,所以由解得(舍去)或,于是得,所以,因為,(1)所以,(2)所以由(1)(2)得:故20、(1)(2)【解析】(1)由可知數(shù)列是公比為的等比數(shù)列,若選①:結(jié)合等差數(shù)列等差中項的性質(zhì)計算求解;若選②:利用等比數(shù)列等比中項的性質(zhì)計算求解,若選③:利用直接計算;(2)根據(jù)對數(shù)的運算,可知數(shù)列為等差數(shù)列,直接求和即可.小問1詳解】由,當(dāng)時,,即,即,所以數(shù)列是公比為的等比數(shù)列,若選①:由,即,,所以數(shù)列的通項公式為;若選②:由,所以,所以數(shù)列的通項公式為;若選③:由,即,所以數(shù)列的通項公式為;【小問2詳解】由(1)得,所以數(shù)列等差數(shù)列,所以.21、(1);(2).【解析】(1)根據(jù)給定條件結(jié)合當(dāng)時,探求數(shù)列的性質(zhì)即可計算作答.(2)由(1)求出,再利用錯位相減法計算作答.小問1詳解】依題意,當(dāng)時,因為,則,當(dāng)時,,解得,于是得數(shù)列是以1為首項,為公比的等比數(shù)列,則,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度廚師職業(yè)發(fā)展規(guī)劃與勞務(wù)聘用協(xié)議3篇
- 2025年度文化創(chuàng)意產(chǎn)業(yè)園區(qū)租賃合同3篇
- 2024年高科技企業(yè)質(zhì)押擔(dān)保及反擔(dān)保合同范本3篇
- 2024年版甲乙雙方公司房屋出租協(xié)議書
- 2024年臍橙種植基地病蟲害防治與農(nóng)藥使用合同3篇
- 2024年訂婚協(xié)議規(guī)范化文本版
- 2024年酒店管理承包協(xié)議樣本版B版
- 2024年貨物買賣合同示范文本
- 2024簽合同附加協(xié)議書:科技研發(fā)合作項目3篇
- 2025年度新能源電池采購合同約定3篇
- GB/T 43701-2024滑雪場地滑雪道安全防護規(guī)范
- 全市農(nóng)業(yè)行政執(zhí)法人員上崗培訓(xùn)班
- 小學(xué)音樂一年級下冊放牛歌音樂教案
- 山東省濟南市2023-2024學(xué)年高一上學(xué)期1月期末考試數(shù)學(xué)試題(解析版)
- 手術(shù)室搶救工作制度
- 施工圖設(shè)計師的年終報告
- 鋼閘門監(jiān)理評估報告
- 高檔養(yǎng)老社區(qū)項目計劃書
- 京東物流信息系統(tǒng)
- 年會拜年祝福視頻腳本
- 統(tǒng)編版六年級語文上冊專項 專題09病句辨析與修改-原卷版+解析
評論
0/150
提交評論