四川省廣元市川師大萬達中學2025屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第1頁
四川省廣元市川師大萬達中學2025屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第2頁
四川省廣元市川師大萬達中學2025屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第3頁
四川省廣元市川師大萬達中學2025屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第4頁
四川省廣元市川師大萬達中學2025屆高二數(shù)學第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省廣元市川師大萬達中學2025屆高二數(shù)學第一學期期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某班新學期開學統(tǒng)計新冠疫苗接種情況,已知該班有學生45人,其中未完成疫苗接種的有5人,則該班同學的疫苗接種完成率為()A. B.C. D.2.2021年11月,鄭州二七罷工紀念塔入選全國職工愛國主義教育基地名單.某數(shù)學建模小組為測量塔的高度,獲得了以下數(shù)據(jù):甲同學在二七廣場A地測得紀念塔頂D的仰角為45°,乙同學在二七廣場B地測得紀念塔頂D的仰角為30°,塔底為C,(A,B,C在同一水平面上,平面ABC),測得,,則紀念塔的高CD為()A.40m B.63mC.m D.m3.命題“存在,使得”為真命題的一個充分不必要條件是()A. B.C. D.4.已知數(shù)列滿足:且,則此數(shù)列的前20項的和為()A.621 B.622C.1133 D.11345.已知等差數(shù)列,,則公差d等于()A. B.C.3 D.-36.已知各項均為正數(shù)的等比數(shù)列滿足,若存在兩項,使得,則的最小值為()A.4 B.C. D.97.已知雙曲線的一條漸近線方程為,它的焦距為2,則雙曲線的方程為()A B.C. D.8.過點的直線在兩坐標軸上的截距之和為零,則該直線方程為()A. B.C.或 D.或9.運行如圖所示程序后,輸出的結果為()A.15 B.17C.19 D.2110.已知拋物線的焦點為,直線過點與拋物線相交于兩點,且,則直線的斜率為()A. B.C. D.11.已知動點在直線上,過點作圓的切線,切點為,則線段的長度的最小值為()A. B.4C. D.12.2021年小林大學畢業(yè)后,9月1日開始工作,他決定給自己開一張儲蓄銀行卡,每月的10號存錢至該銀行卡(假設當天存錢次日到賬).2021年9月10日他給卡上存入1元,以后每月存的錢數(shù)比上個月多一倍,則他這張銀行卡賬上存錢總額(不含銀行利息)首次達到1萬元的時間為()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日二、填空題:本題共4小題,每小題5分,共20分。13.圓關于直線對稱的圓的方程為______14.已知函數(shù),則曲線在點處的切線方程為___________.15.圓關于y軸對稱的圓的標準方程為___________.16.等比數(shù)列的前n項和,則的通項公式為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),且a0(1)當a=1時,求函數(shù)f(x)的單調區(qū)間;(2)記函數(shù),若函數(shù)有兩個零點,①求實數(shù)a的取值范圍;②證明:18.(12分)已知,:,:.(1)若,為真命題,為假命題,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍19.(12分)已知動點到點的距離與點到直線的距離相等.(1)求動點的軌跡方程;(2)若過點且斜率為的直線與動點的軌跡交于、兩點,求三角形AOB的面積.20.(12分)已知拋物線C:x2=2py的焦點為F,點N(t,1)在拋物線C上,且|NF|=.(1)求拋物線C的方程;(2)過點M(0,1)的直線l交拋物線C于不同的兩點A,B,設O為坐標原點,直線OA,OB的斜率分別為k1,k2,求證:k1k2為定值.21.(12分)已知直線l經(jīng)過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0交點,且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標準方程22.(10分)某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數(shù)據(jù)如表:零件的個數(shù)x(個)2345加工的時間y(小時)2.5344.5(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖.(2)求出y關于x的線性回歸方程,試預測加工10個零件需要多少小時?(注:,)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用古典概型的概率求解.【詳解】該班同學的疫苗接種完成率為故選:D2、B【解析】設,先表示出,再利用余弦定理即可求解.【詳解】如圖所示,,設塔高為,因為平面ABC,所以,所以,又,即,解得.故選:B.3、B【解析】“存在,使得”為真命題,可得,利用二次函數(shù)的單調性即可得出.再利用充要條件的判定方法即可得出.【詳解】解:因為“存在,使得”為真命題,所以,因此上述命題得個充分不必要條件是.故選:B.【點睛】本題考查了二次函數(shù)的單調性、充要條件的判定方法,考查了推理能力與計算能力,屬于中檔題.4、C【解析】這個數(shù)列的奇數(shù)項是公差為2的等差數(shù)列,偶數(shù)項是公比為2的等比數(shù)列,只要分開來計算即可.【詳解】由于,所以當n為奇數(shù)時,是等差數(shù)列,即:共10項,和為;,共10項,其和為;∴該數(shù)列前20項的和;故選:C.5、B【解析】根據(jù)題意,利用公式,即可求解.【詳解】由題意,等差數(shù)列,,可得等差數(shù)列的公差.故選:B.6、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【詳解】因為各項均為正數(shù)的等比數(shù)列滿足,可得,即解得或(舍去)∵,,∴=當且僅當,即m=2,n=4時,等號成立故的最小值等于.故選:C【點睛】方法點睛:本題主要考查等比數(shù)列的通項公式和基本不等式的應用,解題的關鍵是常量代換的技巧,所謂常量代換,就是把一個常數(shù)用代數(shù)式來代替,如,再把常數(shù)6代換成已知中的m+n,即.常量代換是基本不等式里常用的一個技巧,可以優(yōu)化解題,提高解題效率.7、B【解析】根據(jù)雙曲線的一條漸近線方程為,可得,再結合焦距為2和,求得,即可得解.【詳解】解:因為雙曲線的一條漸近線方程為,所以,即,又因焦距為2,即,即,因為,所以,所以,所以雙曲線的方程為.故選:B.8、D【解析】分截距為零和不為零兩種情況討論即可﹒【詳解】當直線過原點時,滿足題意,方程為,即2x-y=0;當直線不過原點時,設方程為,∵直線過(1,2),∴,∴,∴方程為,故選:D﹒9、D【解析】根據(jù)給出的循環(huán)程序進行求解,直到滿足,輸出.【詳解】,,,,,,,,,,,,所以.故選:D10、B【解析】設直線傾斜角為,由,及,可求得,當點在軸上方,又,求得,利用對稱性即可得出結果.【詳解】設直線傾斜角為,由,所以,由,,所以,當點在軸上方,又,所以,所以由對稱性知,直線的斜率.故選:B.11、A【解析】求出的最小值,由切線長公式可結論【詳解】解:由,得最小時,最小,而,所以故選:A.12、C【解析】分析可得每月所存錢數(shù)依次成首項為1,公比為2的等比數(shù)列,其前n項和為,分析首次達到1萬元的值,即得解【詳解】依題意可知,小林從第一個月開始,每月所存錢數(shù)依次成首項為1,公比為2的等比數(shù)列,其前n項和為.因為為增函數(shù),且,所以第14個月的10號存完錢后,他這張銀行卡賬上存錢總額首次達到1萬元,即2022年10月11日他這張銀行卡賬上存錢總額首次達到1萬元.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出圓心關于直線對稱點,從而求出對稱圓的方程.【詳解】圓心為,半徑為1,設關于對稱點為,則,解得:,故對稱點為,故圓關于直線對稱的圓的方程為.故答案為:14、【解析】對函數(shù)求導,由導數(shù)的幾何意義可得切線的斜率,求得切點,由直線的點斜式方程可得所求切線的方程【詳解】函數(shù)的導數(shù)為∴,.曲線在點處的切線方程為,即.故答案為:.15、【解析】根據(jù)題意可得圓心坐標為,半徑為1,利用平面直角坐標系點關于坐標軸對稱特征可得所求的圓心坐標為,半徑為1,進而得出結果.【詳解】由題意知,圓的圓心坐標為,半徑為1,設圓關于y軸對稱的圓為,所以,半徑為1,所以的標準方程為.故答案為:16、【解析】利用的關系,結合是等比數(shù)列,即可求得結果.【詳解】因為,故當時,,則,又當時,,因為是等比數(shù)列,故也滿足,即,故,此時滿足,則.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)f(x)在區(qū)間(0,+)上單調遞減(2)①;②證明見解析【解析】(1)求導,求解可得導函數(shù)恒小于等于0,即得證;(2)①分析函數(shù)的單調性,由有兩個實數(shù)根可求解;②由(1)得2lnxx?,再利用其放縮可得,由此有,問題得證.【小問1詳解】當a=1時,函數(shù)因為所以函數(shù)f(x)在區(qū)間(0,+)上單調遞減;【小問2詳解】(i)由已知可得方程有兩個實數(shù)根記,則.當時,,函數(shù)k(x)是增函數(shù);當時,,函數(shù)k(x)是減函數(shù),所以,故(ii)易知,當x1時,,故.由(1)可知,當0x1時,,所以2lnxx?由,得,所以因為,所以18、(1)(2)【解析】(1)化簡命題p,將m=3代入求出命題q,再根據(jù)或、且連接的命題真假確定p,q真假即可得解;(2)由給定條件可得p是q的必要不充分條件,再列式計算作答.【小問1詳解】依題意,:,:,得:.當時,:,因為真命題,為假命題,則與一真一假,當真假時,即或,無解,當假真時,即或,解得或,綜上得:或,所以實數(shù)x的取值范圍是;【小問2詳解】因是的充分不必要條件,則p是q的必要不充分條件,于是得,解得,所以實數(shù)m的取值范圍是19、(1)(2)【解析】小問1:由拋物線的定義可求得動點的軌跡方程;小問2:可知直線的方程為,設點、,將直線的方程與拋物線的方程聯(lián)立,求出的值,利用拋物線的定義可求得的值,結合面積公式即可求解小問1詳解】由題意點的軌跡是以為焦點,直線為準線的拋物線,所以,則,所以動點的軌跡方程是.【小問2詳解】由已知直線的方程是,設、,由得,,所以,則,故,20、(1)x2=2y;(2)證明見解析【解析】(1)利用拋物線的定義進行求解即可;(2)設直線l的直線方程與拋物線方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關系、斜率公式進行證明即可.【小問1詳解】∵點N(t,1)在拋物線C:x2=2py上,且|NF|=,∴|NF|=,解得p=1,∴拋物線C的方程為x2=2y;【小問2詳解】依題意,設直線l:y=kx+1,A(x1,y1),B(x2,y2),聯(lián)立,得x2﹣2kx﹣2=0.則x1x2=﹣2,∴.故k1k2為定值.【點睛】關鍵點睛:利用拋物線的定義是解題的關鍵.21、(1)(2)【解析】(1)先求得直線和直線的交點坐標,再用點斜式求得直線的方程.(2)設圓的標準方程為,根據(jù)已知條件列方程組,求得,由此求得圓的標準方程.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論