江蘇省南京市江寧區(qū)2025屆數(shù)學高二上期末質量跟蹤監(jiān)視試題含解析_第1頁
江蘇省南京市江寧區(qū)2025屆數(shù)學高二上期末質量跟蹤監(jiān)視試題含解析_第2頁
江蘇省南京市江寧區(qū)2025屆數(shù)學高二上期末質量跟蹤監(jiān)視試題含解析_第3頁
江蘇省南京市江寧區(qū)2025屆數(shù)學高二上期末質量跟蹤監(jiān)視試題含解析_第4頁
江蘇省南京市江寧區(qū)2025屆數(shù)學高二上期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南京市江寧區(qū)2025屆數(shù)學高二上期末質量跟蹤監(jiān)視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如果直線與直線垂直,那么的值為()A. B.C. D.22.已知直線與直線垂直,則a=()A.3 B.1或﹣3C.﹣1 D.3或﹣13.已知空間向量,,若,則實數(shù)的值是()A. B.0C.1 D.24.若,則實數(shù)的取值范圍是()A. B.C. D.5.函數(shù)的圖像大致是()A. B.C. D.6.在區(qū)間上隨機取一個數(shù),則事件“曲線表示圓”的概率為()A. B.C. D.7.若函數(shù)在區(qū)間內存在最大值,則實數(shù)的取值范圍是()A. B.C. D.8.若則()A.?2 B.?1C.1 D.29.雙曲線的離心率的取值范圍為,則實數(shù)的取值范圍為()A. B.C. D.10.已知實數(shù),,則下列不等式恒成立的是()A. B.C. D.11.設,則的一個必要不充分條件為()A. B.C. D.12.“”是“函數(shù)在上無極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在點處的切線方程為____.14.已知O為坐標原點,橢圓T:,過橢圓上一點P的兩條直線PA,PB分別與橢圓交于A,B,設PA,PB的中點分別為D,E,直線PA,PB的斜率分別是,,若直線OD,OE的斜率之和為2,則的最大值為_______15.圓錐曲線的焦點在軸上,離心率為,則實數(shù)的值是__________.16.在正項等比數(shù)列{an}中,若,與的等差中項為12,則等于_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某小學調查學生跳繩的情況,在五年級隨機抽取了100名學生進行測試,得到頻率分布直方圖如下,且規(guī)定積分規(guī)則如下表:每分鐘跳繩個數(shù)得分17181920(1)求頻率分布直方圖中,跳繩個數(shù)在區(qū)間的小矩形的高;(2)依據(jù)頻率分布直方圖,把第40百分位數(shù)劃為合格線,低于合格分數(shù)線的學生需補考,試確定本次測試的合格分數(shù)線;(3)依據(jù)積分規(guī)則,求100名學生的平均得分.18.(12分)如圖,已知圓錐SO底面圓的半徑r=1,直徑AB與直徑CD垂直,母線SA與底面所成的角為.(1)求圓錐SO的側面積;(2)若E為母線SA的中點,求二面角E-CD-B的大小.(結果用反三角函數(shù)值表示)19.(12分)從橢圓上一點P向x軸作垂線,垂足恰為左焦點,A是橢圓C與x軸正半軸的交點,直線AP的斜率為,若橢圓長軸長為8(1)求橢圓C的方程;(2)點Q為橢圓上任意一點,求面積的最大值20.(12分)如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥面ABCD,E為PD的中點.(1)證明:PB∥面AEC;(2)設AP=1,AD=,三棱錐P-ABD的體積V=,求點A到平面PBC的距離.21.(12分)已知圓的半徑為,圓心在直線上,點在圓上.(1)求圓的標準方程;(2)若原點在圓內,求過點且與圓相切的直線方程.22.(10分)在中,角的對邊分別為,且.(1)求;(2)若,的面積為,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)兩條直線垂直列方程,化簡求得的值.【詳解】由于直線與直線垂直,所以.故選:A2、D【解析】根據(jù),得出關于的方程,即可求解實數(shù)的值.【詳解】直線與直線垂直,所以,解得或.故選:D.3、C【解析】根據(jù)空間向量垂直的性質進行求解即可.【詳解】因為,所以,因此有.故選:C4、B【解析】由題意可知且,構造函數(shù),可得出,由函數(shù)的單調性可得出,利用導數(shù)求出函數(shù)的最小值,可得出關于的不等式,由此可解得實數(shù)的取值范圍.【詳解】因為,則且,由已知可得,構造函數(shù),其中,,所以,函數(shù)為上的增函數(shù),由已知,所以,,可得,構造函數(shù),其中,則.當時,,此時函數(shù)單調遞減,當時,,此時函數(shù)單調遞增,則,所以,,解得.故選:B.5、B【解析】由導數(shù)判斷函數(shù)的單調性及指數(shù)的增長趨勢即可判斷.【詳解】當時,,∴在上單調遞增,當時,,∴在上單調遞減,排除A、D;又由指數(shù)函數(shù)增長趨勢,排除C.故選:B6、D【解析】先求出曲線表示圓參數(shù)的范圍,再由幾何概率可得答案.【詳解】由可得曲線表示圓,則解得或又所以曲線表示圓的概率為故選:D7、A【解析】利用函數(shù)的導數(shù),求解函數(shù)的極值,推出最大值,然后轉化列出不等式組求解的范圍即可【詳解】,或,∴在單調遞減,在單調遞增,在單調遞減,∴f(x)有極大值,要使f(x)在上有最大值,則極大值3即為該最大值,則,又或,∴,綜上,.故選:A.8、B【解析】分子分母同除以,化弦為切,代入即得結果.【詳解】由題意,分子分母同除以,可得.故選:B.9、C【解析】分析可知,利用雙曲線的離心率公式可得出關于的不等式,即可解得實數(shù)的取值范圍.【詳解】由題意有,,則,解得:故選:C.10、C【解析】根據(jù)不等式性質和作差法判斷大小依次判斷每個選項得到答案.【詳解】當時,不等式不成立,錯誤;,故錯誤正確;當時,不等式不成立,錯誤;故選:.【點睛】本題考查了不等式的性質,作差法判斷大小,意在考查學生對于不等式知識的綜合應用.11、C【解析】利用必要條件和充分條件的定義判斷.【詳解】A選項:,,,所以是的充分不必要條件,A錯誤;B選項:,,所以是的非充分非必要條件,B錯誤;C選項:,,,所以是必要不充分條件,C正確;D選項:,,,所以是的非充分非必要條件,D錯誤.故選:C.12、B【解析】根據(jù)極值的概念,可知函數(shù)在上無極值,則方程的,再根據(jù)充分、必要條件判斷,即可得到結果.【詳解】由題意,可得,若函數(shù)在上無極值,所以對于方程,,解得.所以“”是“函數(shù)在上無極值”的必要不充分條件.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出導函數(shù),進而根據(jù)導數(shù)的幾何意義求出切線的斜率,然后求出切線方程.【詳解】由題意,,,則切線方程為:.故答案為:.14、【解析】設的坐標,用點差法求和與的關系同,與的關系,然后表示出,求得最大值【詳解】設,,,則,兩式相減得,∴,,則,同理,,又,∴,,當且僅當,即時等號成立,∴,故答案為:【點睛】方法點睛:本題考查直線與橢圓相交問題,考查橢圓弦中點問題.橢圓中涉及到弦的中點時,常常用點差法確定關系,即設弦端點為,弦中點為,把兩點坐標代入橢圓方程,相減后可得15、【解析】根據(jù)圓錐曲線焦點在軸上且離心率小于1,確定a,b求解即可.【詳解】因為圓錐曲線的焦點在軸上,離心率為,所以曲線為橢圓,且,所以,解得,故答案為:16、128【解析】先根據(jù)條件利用等比數(shù)列的通項公式列方程組求出首項和公差,進而可得.【詳解】設正項等比數(shù)列{an}的公比為,由已知,得,①,又,②,由①②得,故答案為:128.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)分【解析】(1)根據(jù)頻率之和為列方程來求得跳繩個數(shù)在區(qū)間的小矩形的高.(2)根據(jù)百分位數(shù)的計算方法計算出合格分數(shù)線.(3)根據(jù)平均數(shù)的求法求得名學生的平均得分.【小問1詳解】設跳繩個數(shù)在區(qū)間的小矩形的高為,則,解得.【小問2詳解】第一組的頻率為,第二組的頻率為,第三組的頻率為,第四組的頻率為,第五組的頻率為,第六組的頻率為,所以第百分位數(shù)為.也即合格分數(shù)線為.【小問3詳解】名學生的平均得分為分.18、(1)(2)【解析】(1)先根據(jù)母線與底面的夾角求出圓錐的母線長,然后根據(jù)圓錐的側面積公式即可(2)利用三角形的中位線性質,先求出二面角,然后利用二面角與二面角的互補關系即可求得【小問1詳解】根據(jù)母線SA與底面所成的角為,且底面圓的半徑可得:則圓錐的側面積為:【小問2詳解】如圖所示,過點作底面的垂線交于,連接,則為的中位線則有:,,易知,則,又直徑AB與直徑CD垂直,則則有:為二面角可得:又二面角與二面角互為補角,則二面角的余弦值為故二面角大小為19、(1)(2)18【解析】(1)易得,,進而有,再結合已知即可求解;(2)由(1)易得直線AP的方程為,,設與直線AP平行的直線方程為,由題意,當該直線與橢圓相切時,記與AP距離比較遠的直線與橢圓的切點為Q,此時的面積取得最大值,將代入橢圓方程,聯(lián)立即可得與AP距離比較遠的切線方程,從而即可求解.【小問1詳解】解:由題意,將代入橢圓方程,得,又∵,∴,化簡得,解得,又,,所以,∴,∴橢圓的方程為;【小問2詳解】解:由(1)知,直線AP的方程為,即,設與直線AP平行的直線方程為,由題意,當該直線與橢圓相切時,記與AP距離比較遠的直線與橢圓的切點為Q,此時的面積取得最大值,將代入橢圓方程,化簡可得,由,即,解得,所以與AP距離比較遠的切線方程,因為與之間的距離,又,所以的面積的最大值為20、(1)證明見解析;(2).【解析】(1)設BD交AC于點O,連結EO,根據(jù)三角形中位線證明BP∥EO即可;(2)根據(jù)三棱錐P-ABD的體積求出AB長度,過A作AH⊥BP于H,可證AH即為要求的距離,根據(jù)直角三角形等面積法即可求AH長度.【小問1詳解】設BD交AC于點O,連結EO.∵ABCD為矩形,∴O為BD的中點.又E為PD的中點,∴EO∥PB,又EO平面AEC,PB平面AEC,∴PB∥平面AEC.【小問2詳解】,又V=,可得AB=2.在面PAB內過點A作交于.由題設易知平面,∴故平面,由等面積法得:,∴點A到平面的距離為.21、(1)或(2)或【解析】(1)先設出圓的標準方程,利用點在圓上和圓心在直線上得到圓心坐標的方程組,進而求出圓的標準方程;(2)先利用原點在圓內求出圓的方程,設出切線方程,利用圓心到切線的距離等于半徑進行求解.【小問1詳解】解:設圓的標準方程為,由已知得,解得或,故圓的方程為或.【小問2詳解】解:因為,,且原點在圓內,故圓的方程為,則圓心為,半徑為,設切線為,即,則,解得或,故切線為或,即或即為所求.22、(1);(2).【解析】(1)由正弦定理得到,兩邊消去公因式得到,化一即可求得角A;(2)因為,所以,再結合余弦定理得到結果.【詳解】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論