控制系統(tǒng)CAD及仿真_第1頁
控制系統(tǒng)CAD及仿真_第2頁
控制系統(tǒng)CAD及仿真_第3頁
控制系統(tǒng)CAD及仿真_第4頁
控制系統(tǒng)CAD及仿真_第5頁
已閱讀5頁,還剩49頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

USTBzW制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第1頁

系統(tǒng)CAD及仿真概述

條統(tǒng)仿真技術(shù)

■仿真(Simulation):

用模型(物理模型或數(shù)學(xué)模型)代替實際系統(tǒng)進行實驗和研究。

-相似原理:是仿真所遵循的基本原則。

?兒何相似

物理仿真:應(yīng)用幾何相似原理,制作一個與實際系統(tǒng)相似但幾何尺寸較小

的物理模型(例如飛機模型放在氣流場相似的風洞中)進行實驗研究。

-數(shù)學(xué)相似

數(shù)學(xué)仿真:應(yīng)用數(shù)學(xué)相似原理,構(gòu)成數(shù)學(xué)模型在計算機上進行實驗研究。

-模擬計算機仿真:連續(xù)量并行運算、速度快、精度低、存儲和邏輯差。

.數(shù)字計算機仿真:數(shù)字量串行運算,組合、存儲和邏輯強、精度高

.數(shù)字/模擬計算機混合仿真

-半物理仿真:有部分實物介入和計算機聯(lián)合完成仿真

-自動控制系統(tǒng)的計算機仿真(本課程的重點)

將實際系統(tǒng)的運動規(guī)律用數(shù)學(xué)形式(數(shù)學(xué)模型)表達出來。它們通常是一組常微分

方程或一組差分方程。然后用模擬計算機或數(shù)字計算機來求解這些方程。

■自動控制系統(tǒng)的計算機仿真的作用

-對被控對象進行分析

-檢驗控制系統(tǒng)的實際結(jié)果,得出整定參數(shù)的規(guī)律

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第2頁

控制系統(tǒng)CAD及仿真概述(續(xù))

?計算機仿真的優(yōu)點

■替代實物試驗,節(jié)省投資和時間

=一一

?完成不能進行物理仿真的工作,如危險場合和資

彥?A生

金昂貴(冶金工業(yè)軋機、化工系統(tǒng)、火箭和航天~土=

器等)叼心點童力

?用一套仿真設(shè)備可以對物理性質(zhì)截然不同的許多

控制系統(tǒng)進行仿真研究Acdz1D

.控制系統(tǒng)仿真過程

?第一步:建立系統(tǒng)的數(shù)學(xué)模型

數(shù)學(xué)模型是系統(tǒng)仿真的依據(jù),所以數(shù)學(xué)模型是十

分重要的(對于控制系統(tǒng)仿真而言,這里所講的

數(shù)學(xué)模型不僅包括對象,而且還包括了控制器及

各種構(gòu)成系統(tǒng)所必須的部分)。

?第二步:建立仿真模型

Ar?@心巨用

通過一定的算法對原系統(tǒng)的數(shù)學(xué)模型進行離散化

處理,就連續(xù)系統(tǒng)而言,是建立相應(yīng)的差分方程。J

■D力各

■第三步:編制仿真程序

可用一般的高級語言或仿真語言。對于快速的實?60I?

時仿真,往往需要用匯編語言。

騎1.2密苴》及痣£吩AF1

?第四步:進行仿真實驗并輸出仿真結(jié)果

通過實驗對仿真系統(tǒng)模型及程序進行校驗和修改,

然后按系統(tǒng)仿真的要求輸出仿真結(jié)果。

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第3頁

控制系統(tǒng)CAD及仿真概述(續(xù))

■涉及三個具體的部分:一是實際系統(tǒng),二是數(shù)學(xué)模型,三是計算機,并且共有兩次

模型化。第一次是將實際系統(tǒng)變成數(shù)學(xué)模型,第二次是將數(shù)學(xué)模型變成仿真模型。

-通常我們將一次模型化的技術(shù)稱為系統(tǒng)建?;蛳到y(tǒng)辨識,而將二次模型化、仿真編

程、運行、修改參數(shù)等技術(shù)稱為系統(tǒng)仿真技術(shù)。雖然兩者有十分密切的聯(lián)系,但仍

有區(qū)別。系統(tǒng)建?;蛳到y(tǒng)辨識是研究實際系統(tǒng)與數(shù)學(xué)模型之間的關(guān)系,而系統(tǒng)仿真

技術(shù)則是研究系統(tǒng)數(shù)學(xué)模型與計算機之間的關(guān)系

-所以,具體地講,將一個能近似描述實際系統(tǒng)的數(shù)學(xué)模型進行二次模型化,變成一

個仿真模型.然后將它們放到計尊機卜講行運食的時程就稱為仿真。

圖1.1-2一次模型化與二次模型化

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第4頁

控制系統(tǒng)CAD及仿真概述(續(xù))

-仿真技術(shù)的應(yīng)用與發(fā)展

-仿真技術(shù)廣泛應(yīng)用于工程系統(tǒng),如化工流程模擬、造船、飛機、導(dǎo)彈等研制過程和非工程系統(tǒng),

如用于研究社會經(jīng)濟、人口、污染、生物系統(tǒng)等等。

?控制系統(tǒng)的仿真是一門涉及到控制理論、計算數(shù)學(xué)和計算機技術(shù)的綜合性的學(xué)科。

.學(xué)術(shù)組織:

■國際仿真聯(lián)合會(InternationalAssociationforMathematicandComputerinSimulation一

IAMCS)

■中國系統(tǒng)仿真學(xué)會(ChineseAssociationforSystemSimulation一CASS)

-硬件歷史

?40年代,出現(xiàn)了通用的模擬計算機,多用于設(shè)計飛機。

?50年代末,數(shù)字計算機便在非實時仿真方面開始得到廣泛應(yīng)用

?1958年,出現(xiàn)了第一臺專用的模擬/數(shù)字混合計算機,用來解決導(dǎo)彈軌道的計算問題。

■60年代初期,出現(xiàn)了混合計算機的商品。

?計算機仿真軟件的發(fā)展

?60年代初發(fā)展了仿真語言。其實,數(shù)字仿真通用程序與仿真語言在仿真功能上并無多大差

另IJ,只是它們規(guī)定了某種語句類型和語法,使用時只要按照這些語句和語法直接把數(shù)學(xué)模

型寫成程序就可以了。

-計算機仿真語言

⑴以常微分方程表示數(shù)學(xué)模型的,如DSL/90,MIMIC,CSMP,CSSL等;

(2)以偏微分方程表示數(shù)學(xué)模型的,如FORSIM,PDEL等

(3)以差分方程表示數(shù)學(xué)模型的,如DYNAMO等

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第5頁

控制系統(tǒng)CAD及仿真概述(續(xù))

■幾種常用仿真軟件

-PoroteKPSPICE、ORCAD:通用的電子電路仿真軟件,適合于元件級仿真。

-SYSTEMVIEW:系統(tǒng)級的電路動態(tài)仿真軟件

?MATLAB:具有強大的數(shù)值計算能力,包含各種工具箱,其程序不能脫離

MATLAB環(huán)境而運行,所以嚴格講,MATLAB不是一種計算機語言,而是一種

高級的科學(xué)分析與計算軟件。

.SIMULINK:是MATLAB附帶的基于模型化圖形組態(tài)的動態(tài)仿真環(huán)境。

.SCILAB:和MATLAB功能類似的自由仿真軟件。

■發(fā)布SCILAB競賽信息的相關(guān)網(wǎng)址

■競賽信息網(wǎng)址:http:〃/scilab05/

.SCILAB主頁:

http:〃

http:〃

http:〃/Scilab

.中法實驗室SCILAB工作組主頁

http:〃:8080/scilab/index.jsp

?SCILAB下載網(wǎng)址:

http:〃www-rocq.inria.fir/scilab/

http:〃/SCILAB/scilabindexgb.htm

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第6頁

控制系統(tǒng)CAD及仿真概述(續(xù))

-控制系統(tǒng)計算機輔助設(shè)計(CSCAD)技術(shù)

ControlSystemComputer-AidedDesign

■計算機輔助設(shè)計技術(shù)(簡稱CAD)是在計算機技術(shù)得到迅速發(fā)展后出現(xiàn)的一門

新興技術(shù),它可以利用計算機的快速計算能力及計算機圖形技術(shù)幫助設(shè)計

人員進行復(fù)雜的設(shè)計.因此,CAD已在機械制造、建筑設(shè)計、服裝剪裁、

大規(guī)模集成電路以及控制系統(tǒng)設(shè)計等技術(shù)領(lǐng)域內(nèi)得到廣泛的應(yīng)用。

-70年代左右,CSCAD在數(shù)字仿真技術(shù)的基礎(chǔ)上逐步發(fā)展起來的,目的是解

決如何把控制理論轉(zhuǎn)換成工程上可以實現(xiàn)的方法。60年代后,數(shù)字計算機

逐漸普及,控制系統(tǒng)的設(shè)計者開始在數(shù)字仿真軟件及語言的基礎(chǔ)上,增加

有關(guān)控制器設(shè)計的模塊,從而產(chǎn)生了第一代CSCAD軟件.與此同時,為了

發(fā)展空間技術(shù),人們在古典控制理論中吸收了應(yīng)用數(shù)學(xué)方面的新成就,從

而發(fā)展成為現(xiàn)代控制理論.現(xiàn)代控制理論在實踐中遇到的最大難題就是如

何把由數(shù)學(xué)語言表達的理論轉(zhuǎn)化為工程上實用的方法,因此,人們迫切希

望開發(fā)出一種軟件系統(tǒng),使控制工程師可以方便地應(yīng)用現(xiàn)代控制理論來解

決工程實際中的問題。

■從70年代初到80年代初,世界各國的控制理論界、工程界及計算機軟件界

互相結(jié)合,已開發(fā)出一大批用于控制系統(tǒng)設(shè)計的軟件包.雖然它們所采用

的理論不盡相同,軟件包的結(jié)構(gòu)及人一機交互方式也各具特色,但是從功

能上看,這些軟件都是以控制系統(tǒng)設(shè)計為主的;從整體上看,它們已經(jīng)獨

立干仿直語言或仿直軟件句'誦常.稱它們?yōu)榈谝毁癈SCAD軟件句「

USTBzW制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第7頁

系統(tǒng)CAD及仿真概述(續(xù))

-由于第二代CSCAD軟件包在完整性、一體化、使用環(huán)境、對用戶的指導(dǎo)等方面還存

在許多問題,因此在一定程度上阻礙了第二代CSCAD軟件包在工程界的推廣應(yīng)

用.從80年代中期開始,Taylor,Frederick,Birdwell及Astrom等人先后論述了研究

第三代CSCAD軟件包的必要性及可行性,并給出了新一代軟件包的概念性結(jié)構(gòu)及它

們的原型.與此同時,在仿真界,Oren及Zeigler也提出了先進的建模方法學(xué)的新概

念,并開發(fā)了功能,完整的建模語言.第三代CSCAD軟件包利用數(shù)據(jù)庫技術(shù)、圖形

技術(shù)及人工智能技術(shù)使第二代CSCAD軟件包得到了很大的改進.

■我國在CSCAD方面的研究比國外大約晚了10年時間。1984年在國家自然科學(xué)基金的

資助下,成立了由全國15個科研單位及高等院校組成的CSCAD設(shè)計組,開始研制我

國第一個多功能、有較完善的軟件結(jié)構(gòu)的,適用于科學(xué)計算及教學(xué)的CSCAD軟件

包.經(jīng)過三年的努力,該軟件包已于1986年6月正式通過國家級鑒定.1987年國家自

然科學(xué)基金委員會再次資助這一有學(xué)術(shù)價值及實際應(yīng)用意義的研究課題;目標是進

一步完善與擴充該軟件包,如:進一步實現(xiàn)一體化,嵌入人工智能技術(shù)等,使它接

近第三代CSCAD軟件系統(tǒng)的水平,并要求在設(shè)計過程中嚴格遵循軟件工程的設(shè)計方

法,使它具有更強的應(yīng)用價值。

■—個完整的CSCAD系統(tǒng)應(yīng)該包括:模型建立、模型轉(zhuǎn)換、模型分析、系統(tǒng)設(shè)計(時域、

頻域)及系統(tǒng)仿真等部分。要開發(fā)一套具有實用價值的CSCAD系統(tǒng),不僅要依賴于強

有力的計算機硬件(如:高速的計算機,大容量的內(nèi)存,高分辨率的圖形顯示器及

X—y繪圖儀等);還要依賴于強有力的系統(tǒng)軟件,如:更適合于CSCAD的高級語言,

數(shù)據(jù)庫管理系統(tǒng),圖形軟件等,更重要的是依賴于如何將控制理論中一切具有實用

價值的方法與原理納入到CSCAD系統(tǒng)中去,而這又依賴于如何將控制系統(tǒng)設(shè)計工程

師及專家們的經(jīng)驗加入到CSCAD系統(tǒng)中去,因此要求發(fā)展各種CSCAD的算法,并使

CSCAD與人工智能技術(shù)結(jié)合起來。

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第8頁

控制系統(tǒng)CAD及仿真概述(續(xù))

■CSCAD的技術(shù)內(nèi)容

-控制系統(tǒng)的設(shè)計過程

設(shè)計過程本身是人的創(chuàng)造性與智能決策的結(jié)合過程.為了實

現(xiàn)在設(shè)計中的決策,有兩個條件是必需的:一是對各種

問題進行形式化的創(chuàng)造能力,另一是說明它們相對優(yōu)缺

點的能力.

-設(shè)計過程與其它工程活動之間有兩個重要的

接口,即設(shè)計者與顧客之間的交互及設(shè)計者

與實現(xiàn)者之間的交互。

-在控制系統(tǒng)設(shè)計中,顧客的要求通常是以一

種半形式化的方式表達出來的,它們描述了

在不同條件下控制系統(tǒng)所期望的性能而設(shè)計

協(xié)議的表示則通常是借助于仿真來實現(xiàn)的,

也就是說是通過對系統(tǒng)的形式化模型的實驗

來實現(xiàn)的.

■設(shè)計者與實現(xiàn)者之間的交互要求將一個抽象

的控制系統(tǒng)形式化模型轉(zhuǎn)變成一個具體的系

統(tǒng)——指令、軟件及電子硬件.

圖1?2控制系統(tǒng)的設(shè)計過程

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第9頁

控制系統(tǒng)CAD及仿真概述(續(xù))

?由CSCAD系統(tǒng)幫助設(shè)計者進行復(fù)雜控制系統(tǒng)的設(shè)計,需要:

-一個表示模型及系統(tǒng)行為的語言,用這個語言,人們能夠形式化地改變設(shè)計要求

-一個軟件工具來完成各種不同的計算任務(wù)

?CSCAD系統(tǒng)的各個成分支持控制系統(tǒng)設(shè)計的的分三個部分

-開發(fā)模型

?形式化模型,即數(shù)學(xué)模型

概念性模型,它包含了系統(tǒng)的有關(guān)信息,如:模型的應(yīng)用限制,用它來精確表示實際系統(tǒng)

時所存在的長處及弱點,擴展它的各種可能性等

-設(shè)計要求的形式化

建立了被控系統(tǒng)的模型后,設(shè)計者必須確定控制系統(tǒng)設(shè)計的準則,也就是控制系統(tǒng)設(shè)計目標的描

述,通常這種設(shè)計要求先由用戶提出,然后要在設(shè)計過程中作多次修改,所以需要一種對話式的

語言來描述設(shè)計要求。

-進行設(shè)計:在設(shè)計階段,設(shè)計者的主要活動是:

給出各種不同的設(shè)計策略;

說明與解釋這些策略對模型的效果;

決定最佳策略;

基于設(shè)計中所獲得的知識使模型更加完善.

-在這個階段中,CSCAD系統(tǒng)要求給出各種設(shè)計方法,并包含檢查應(yīng)用這些設(shè)計方法以后系統(tǒng)所

達到的性能的模塊,通常后者是利用仿真模塊來實現(xiàn)的.另外,系統(tǒng)中常常還包含了最優(yōu)化模

塊.在最近開發(fā)的一些CSCAD系統(tǒng)中還引進了專家系統(tǒng),它們能自動尋找最優(yōu)的設(shè)計方案.

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第10頁

控制系統(tǒng)CAD及仿真概述(續(xù))

■仿真及模型處理在CSCAD中的地位

控制系統(tǒng)設(shè)計是從建立系統(tǒng)的模型開始,然后確定系統(tǒng)的設(shè)計要求,并對它進

行形式化的描述,繼而再選擇一種或幾種設(shè)計方法對控制系統(tǒng)進行設(shè)計.為了

分析設(shè)計結(jié)果,判別所設(shè)計的控制系統(tǒng)是否符合要求,需要對整個系統(tǒng)進行仿

真,獲取系統(tǒng)對某種典型信號的響應(yīng),如果不滿足要求,則要改變設(shè)計,這樣

反復(fù)多次,最后才能獲得一個滿意的結(jié)果。

■模型

-模型的多種描述形式;

-各種模型形式之間的轉(zhuǎn)換;

-模型的穩(wěn)定性分析;

-模型的標準形與結(jié)構(gòu)分解;

■模型的簡化.

■仿真

-幾乎所有的CSCAD軟件系統(tǒng)都包含有一個功能十分強的仿真模塊

-對簡化后的模型仿真和簡化前的模型仿真(包含實際非線性因素)

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第11頁

控制系統(tǒng)CAD及仿真概述(續(xù))

■小結(jié)

-仿真是對系統(tǒng)進行研究的一種實驗方法,它的基本原則是相似性原理。

-數(shù)字仿真具有經(jīng)濟、安全、快捷、可大量重復(fù)的特點。

■仿真是在模型上進行的,建立系統(tǒng)的模型是仿真的關(guān)鍵內(nèi)容。

■系統(tǒng)模型可以分為物理模型、數(shù)學(xué)模型及仿真模型,據(jù)此可將仿真分為物

理仿真和數(shù)學(xué)仿真兩大類。

-系統(tǒng)、模型、計算機是數(shù)字仿真的三個基本要素,建模、仿真實驗及結(jié)果

分析是三項基本內(nèi)容。

-MATLAB與SIMULINK是當今廣泛為人們采用的控制系統(tǒng)數(shù)字仿真與CAD

應(yīng)用軟件

■習題

-什么是系統(tǒng)仿真?

-有幾種計算機仿真?

-控制系統(tǒng)計算機仿真的內(nèi)容是什么?

■控制系統(tǒng)CAD內(nèi)容是什么?

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第12頁

仿真方法與數(shù)學(xué)模型

■控制系統(tǒng)的數(shù)學(xué)模型在控制系統(tǒng)的研究中有著相當重要的地

位,要對系統(tǒng)進行仿真處理,首先應(yīng)當知道系統(tǒng)的數(shù)學(xué)模型,

然后才可以對系統(tǒng)進行模擬。同樣,如果知道了系統(tǒng)的模型,

才可以在此基礎(chǔ)上設(shè)計一個合適的控制器,使得系統(tǒng)響應(yīng)達

到預(yù)期的效果,從而符合工程實際的需要。

■在線性系統(tǒng)理論中,一般常用的數(shù)學(xué)模型形式有:

■傳遞函數(shù)模型(系統(tǒng)的外部模型)

■狀態(tài)方程模型(系統(tǒng)的內(nèi)部模型)

■零極點增益模型和部分分式模型等

■這些模型之間都有著內(nèi)在的聯(lián)系,可以相互進行轉(zhuǎn)換。

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第13頁

仿真方法與數(shù)學(xué)模型(續(xù))

-系統(tǒng)的基本概念和系統(tǒng)的描述

-系統(tǒng)、實體和模型

?系統(tǒng):由互相作用和互相依賴的部分所組成、且具有特定功能的有機整體。

系統(tǒng)的基本特征:組合性、關(guān)聯(lián)性、目的性和環(huán)境適應(yīng)性。

系統(tǒng)可分為社會系統(tǒng)利自然系統(tǒng),自然系統(tǒng)中又可分為工程系統(tǒng)和非工程系統(tǒng)。我

們主要是研究工程系統(tǒng)。

?實體或系統(tǒng)的實體:一切客觀存在的事物、事件,過程、對象及其運動形態(tài)等等。

實體具有數(shù)不清的層次和特征,能反映實體的一切特征和運動規(guī)律的東西,只能是

實體本身.因此,當我們用許多方法采研究系統(tǒng)時,最終均應(yīng)用系統(tǒng)的實體來加以

檢驗

?模型:對實體特征及其運動規(guī)律的一種表示或抽象,是適當簡化了的實體的代表。

模型不同于實體,模型是系統(tǒng)實體本質(zhì)方面的表達形式,且是取適于人們需要的一

種形式,以便于人們分析和處理

正確建立起來的模型能更深刻、更集中地反映實體的主要特征和運動規(guī)律,從而達

到對實體的抽象.從這一點上說,模型更優(yōu)于實體。

模型是認識系統(tǒng)、研究系統(tǒng)的一種手段或工具,其形式應(yīng)適合應(yīng)用的目的。

模型有物理模型和數(shù)學(xué)模型之分.物理模型是指由物理器件組構(gòu)起來的一種具有與

實體相似的物理性質(zhì)的模型。如按比例縮小了的實體外形或?qū)嶓w樣機;采用數(shù)學(xué)描

述形式表示實體內(nèi)部變量的關(guān)系利規(guī)律的模型,稱之為數(shù)學(xué)模型.由于計算機的迅

速發(fā)展和廣泛應(yīng)用,數(shù)學(xué)模型越來越受到重視和廣泛應(yīng)用。

系統(tǒng)分析、系統(tǒng)辨識、仿真、決策、預(yù)報等等,主要是建立在對數(shù)學(xué)模型的研究上。

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第14頁

仿真方法與數(shù)學(xué)模型(續(xù))

■數(shù)學(xué)模型

■建模方法

■演繹法或分析法:通過對系統(tǒng)本身機理的分析,從理論上導(dǎo)出系統(tǒng)的數(shù)

學(xué)模型—機理模型

-歸納法或系統(tǒng)辨識法:對一個已存在系統(tǒng)的觀察、測量,根據(jù)驗前信息

和大量的輸入/輸出數(shù)據(jù),推斷出所研究實體的數(shù)學(xué)模型——經(jīng)驗?zāi)P?/p>

■數(shù)學(xué)模型三大要素:類型、結(jié)構(gòu)和參數(shù)

-類型:隨機性/確定性,集中參數(shù)型/分布參數(shù)型,線性/非線性,時

變/時不變,動態(tài)/靜態(tài),時域/頻域,連續(xù)時間/離散時間等。還可

分為:參數(shù)模型——代數(shù)方程、微分方程、差分方程、網(wǎng)絡(luò)函數(shù),狀態(tài)

模型等和非參數(shù)模型——脈沖響應(yīng)、階躍響應(yīng)、狀態(tài)轉(zhuǎn)移矩陣等。

-結(jié)構(gòu):采用參數(shù)模型時方程的階次;采用非參數(shù)模型表征時的脈沖響應(yīng)、

階躍響應(yīng)、狀態(tài)轉(zhuǎn)移矩陣等。

-參數(shù):方程中的系數(shù)、狀態(tài)模型中系數(shù)矩陣的元素等等。

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第15頁

仿真方法與數(shù)學(xué)模型(續(xù))

-對建模對象的認識:

系統(tǒng)成分和各成分間的連結(jié)方式和有關(guān)定理或規(guī)律.

系統(tǒng)是否存在非線性效應(yīng)及其類型,以及系統(tǒng)是否為時變的

系統(tǒng)響應(yīng)是否有延時現(xiàn)象

系統(tǒng)過渡過程時間的長短,或主要時間常數(shù)的大小

系統(tǒng)參數(shù)的范圍

系統(tǒng)所允許的輸入信號的幅值

系統(tǒng)干擾或噪聲的特性,以及噪聲與輸入或輸出間是否相關(guān)等等

-建模原則:

目的性——明確建模目的。

實在性——模型的物理概念要明確。

最簡性——突出重點、簡潔實用、代表系統(tǒng)主要基本特性。

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第16頁

仿真方法與數(shù)學(xué)模型(續(xù))

■連續(xù)系統(tǒng)的數(shù)學(xué)模型表示方法

連續(xù)時間模型、離散時間模型、連續(xù)一離散混合模型

-連續(xù)時間模型

4種形式:微分方程、傳遞函數(shù)、脈沖響應(yīng)函數(shù)、狀態(tài)方程

微分方程

a7nya1n—y1aiyd1n—u\din—u2

------------b------------H----------1-1-、----------—H----------1-

a1,jj-lan-\,--j---a"y=b1,--,--,7--1-+b2,-2bnu

atatatatat/?

傳遞函數(shù)U(s)/(s)

/(s)=s+%S+…*S+Q”

…》

3(、s)/=b1is""+n—1}s+bn

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第17頁

仿真方法與數(shù)學(xué)模型(續(xù))

脈沖相應(yīng)函數(shù):

.系統(tǒng)(初始條件為零)受理想脈沖函數(shù)5。)的作用,其響應(yīng)為g?)

T

=JU(T)g(t—T)dT

0

=G(s)

回狀態(tài)方程:

"Q)=Ax(t)+BuQ)

y(t)=Cx(t)+Du(t)

-狀態(tài)方程和傳遞函數(shù)之間的關(guān)系(初始狀態(tài)為零)

G(s)=C(sI-A)~lB+D

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第18頁

仿真方法與數(shù)學(xué)模型(續(xù))

-離散時間模型

-4種形式:差分方程、傳遞函數(shù)、脈沖響應(yīng)序列、狀態(tài)方程

-差分方程

y(左)+a]y(k—1)H-----1-any(k-=b[u(k—1)+b1u(k—2)H—bmu(k—m)

引入后移算子q—',q-ly(k)=y(k-l)

m

\b.q-j

-左)_M_一(/)

“伏)一(A(q-1)

,二o

aQ=1,n>m

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第19頁

仿真方法與數(shù)學(xué)模型(續(xù))

傳遞函數(shù)

y(z)B-)

G(z)=----=------

U(z)A(z-l)

A(z~l

)=1+1H-----+anz

其中

6(z—1)=6z-+…+6z-w

'/1m

在初始條件為零時z-與尸等價。

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第20頁

仿真方法與數(shù)學(xué)模型(續(xù))

脈沖相應(yīng)序列

若對一初始條件為零的系統(tǒng)施加一單位脈沖序列3(左)},則其響

應(yīng)被稱為該系統(tǒng)的權(quán)序列:{8(左)}

1,k=0

5(左)=(

0,左w0

k

"k)=£u(i)g(k-i)

z=O

Z{g(k)}=G(z)

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第21頁

仿真方法與數(shù)學(xué)模型(續(xù))

離散狀態(tài)方程

X

k+1=FxK.+GuK,

—Hxk,

G(z)=H(zl—Fy'G

差分方程==>離散狀態(tài)方程

b2

-b3

i

a}1_Lbn

H=\]0…0]

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第22頁

仿真方法與數(shù)學(xué)模型(續(xù))

-連續(xù)一離散混合模型

典型系統(tǒng):數(shù)字計算機控制一個連續(xù)對象而組成的計算機控制系統(tǒng)

圖2.1-1計算機控制系統(tǒng)

圖2.1-2計算機控制系統(tǒng)的數(shù)學(xué)模型

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第23頁

仿真方法與數(shù)學(xué)模型(續(xù))

-線性系統(tǒng)仿真方法

為了用數(shù)字計算機對連續(xù)時間系統(tǒng)進行仿真,必須將其數(shù)學(xué)模型

轉(zhuǎn)換成數(shù)字計算機便于處理計算的形式。從本質(zhì)上講,就是要找出一個

與該系統(tǒng)等價的離散時間模型,這就是線性系統(tǒng)的仿真方法。也是前面

所說的二次模型化。

下列方法可將連續(xù)時間模型離散時間化:置換法、離散相似法、

數(shù)值積分法、差分變換法

-置換法

原理:用離散算子Z去置換連續(xù)傳函中的S

IN/11

z—eQI+STH-ors=一Inz=--------

G(s)-------------------------------------1G(z)

式中T為采樣周期或離散計算步長

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第24頁

仿真方法與數(shù)學(xué)模型(續(xù))

-簡單置換

令Z-1

Z^l+sT=>5=-------

T

Y(s)1

例.函G(s)=~~=-2

1八?迂一大四0⑸5+0.25+1

園散傳函Y(z)T~

G(z)=-------=-----------------------------------------------

U(z)z2-(2-0.2T)z+(1-0.2T+T2)

差分方程y——

y{k+2)-(2-O2T)y(k+1)+(1-0.2T+T2)y{k}=T2u{k}

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第25頁

仿真方法與數(shù)學(xué)模型(續(xù))

簡單說明

實際是采用的一階前向差分來近似導(dǎo)數(shù)

?⑷二y[(左+l)T]y(\T)

dtt=kT-T

-可能使原來穩(wěn)定的系統(tǒng)變得不穩(wěn)定。

?可通過減小采樣周期T,使模型穩(wěn)定,但會增加計算工作量。

.變換比較粗糙,仿真中很少采用。丁狀水▲

S平面和穩(wěn)定域3平面和穩(wěn)定域

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第26頁

仿真方法與數(shù)學(xué)模型(續(xù))

-雙線性變換

12z-1

s=——Inz=--------------F…

TTz+1

?Ts

1T-----

s32.=1或___2_

Ts

Tz+11------

2

-例(同前)

(4+0.47+T、(k+2)+(2T2-8)、(左+l)+(4+r2-0.4T)y(左)

=T2u(k+2)+2T2u{k+1)+T?"k)

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第27頁

仿真方法與數(shù)學(xué)模型(續(xù))

■說明:

1)雙線性置換中,同為一個二階系統(tǒng),雙線性置換每前推進一步,需

用到前面兩個點的y值和三個點的u值.故比簡單置換法準確;

2)在s域內(nèi)穩(wěn)定的系統(tǒng),通過雙線性置換,在z域內(nèi)仍是穩(wěn)定的。

3)雙線性置換后系統(tǒng)的階次不變.但分子也具有了相同的階次

4)雙線性置換不改變原系統(tǒng)的穩(wěn)態(tài)增益

5)雙線性置換保持連續(xù)系統(tǒng)頻率特性與離散系統(tǒng)的頻率特性相似.低

頻段相差較小、高頻段相差較大。所以該置換主要用于有限帶寬網(wǎng)

絡(luò)或系統(tǒng).

6)雙線性變換具有級聯(lián)性,即

G⑸nQ(z)

^4Gi(s)G2(s)=G](Z)G2(Z)

G2(s)nC2(z)

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第28頁

仿真方法與數(shù)學(xué)模型(續(xù))

■離散相似法

■原理:采用一周期為T的采樣開關(guān)將連續(xù)模型的輸入、輸出分別離散化,要

求輸出V仞在采樣時刻的值等同于原輸出在同一時刻的值,為此,為使輸入

信號“〃近似不失真地輸入原系統(tǒng),必須在“〃的采樣信號〃*優(yōu))=〃他)后再加

一個保持器。如圖所示,近似程度則取決于周期T和保持器的特性。

圖3-1連續(xù)系統(tǒng)離散法

-兩種方法:

z域離散相似法:G⑸二>G(z)差分方程

時域離散相似法:連續(xù)狀態(tài)方程口離散狀態(tài)方程

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第29頁

仿真方法與數(shù)學(xué)模型(續(xù))

■Z域離散相似法

-主要步驟

?第一步:首先畫出連續(xù)系統(tǒng)的結(jié)構(gòu)圖。

■第二步:適當引入“虛擬”采樣開關(guān),選擇保持器類型。

-第三步:原系統(tǒng)與保持器級聯(lián)后,對其級聯(lián)模型求Z變換以求得原系統(tǒng)

的脈沖傳遞函數(shù)。

-第四步:求Z逆變換得出系統(tǒng)的差分方程,即離散模型。

/n%七凡口

■保持器?g(t)

-零階保持器?1J

1—e1----1

G°(s)=----------

u=u(kT),kT<t<(k+1)7"

0T

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第30頁

仿真方法與數(shù)學(xué)模型(續(xù))

■一階保持器

(1-sT、2

1—e

=T(\+Ts)-----------

ITs)

uk(t)=u(kT)+”(Si,._kT),kT<t<{k+l)T

零階保持器對信號的響應(yīng)一階保持器對信號的響應(yīng)

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第31頁

仿真方法與數(shù)學(xué)模型(續(xù))

典型環(huán)節(jié)的離散相似(作業(yè))

■積分環(huán)節(jié):G(s)=l/s

米用零階保持器米用階保持器

1-e*1/]—~ST[2]

"(s)=G0(s)G(s)=--------------H(s)=G](s)G(s)=T(l+Ts).一

SSVTsJs

TT「3z-lI

H(z)=H(z)=

z-12[,z(z-l)J

T

y(k+1)=y(k)+Tu(k)似左+1)=似左)+5囹⑷-"(I)]

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第32頁

仿真方法與數(shù)學(xué)模型(續(xù))

-慣性環(huán)節(jié):G(s)=A/(s+a)

采用零階保持器離散相似,可得其z域傳函為

〃⑶/一二)

a(z-e)

其相應(yīng)的差分方程為

/

y[k+1)=6一"y(k)H---(1—6一")〃(左)

a

B°s+B.

■雙一階環(huán)節(jié)G(s)=。;采用零階保持器離散相似

01SI]

線4(z—D+4?(1—e")

H(z)=——-——-------//彳

aT

AQAi(z-e~)a=A1/Ao

y(k+1)=Ay(左)+Bu(左+1)+Cu(左)

作業(yè)aTaT

A=e~D=A0A,B=BOAXIDC=(A0Bt-A^Bxe--BnAJ/D

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第33頁

仿真方法與數(shù)學(xué)模型(續(xù))

■說明:

1)離散相似法的誤差主要來自采樣開關(guān)與保持器。當系統(tǒng)是零輸入狀

態(tài)時,即“9=0時,>優(yōu))就是精確解,且不論了取多大,計算總是穩(wěn)

定的。

2)由典型環(huán)節(jié)的離散相似結(jié)果和離散相似法的級聯(lián)性質(zhì),則系統(tǒng)或由

框圖描述,或由傳函描述,總可將連續(xù)系統(tǒng)模型相似離散化。

3)零階保持器對積分環(huán)節(jié)離散相似的結(jié)果雖與簡單置換法相同,但整

個離散相似法不同于簡單置換法,即引入零階保持器去重現(xiàn)信號,

并不是簡單的z對s的置換,因此,z域傳函與離散模型,兩法中是彼

此不同的。

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第34頁

仿真方法與數(shù)學(xué)模型(續(xù))

■例:階躍響應(yīng)(作業(yè))

連續(xù)傳函:G(S)=—y—~~-

5+45+5

采樣周期:T=0.1s

零階保持時:

0.07736z-0.08557

H(z)=---------------------------

z2-1.629z+0.6703

一階保持時:

0.04226z2-0.01093z-0.03954

H(z):-----------;----------------------------------

z2-1.629z+0.6703

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第35頁

仿真方法與數(shù)學(xué)模型(續(xù))

■時域離散相似法

采樣周期

Tr廠「

\(t)=Ax+jx,+1=Fxk+Guk

y(t)=Cx(t)[yk=Hxk

u(t)=u(kT),te\_kT,{k+1)T]

A

F=,G=Je(J)d「B,H=C

o

(k+1)T

ATA((k+i)Tr)

作業(yè)xk+]=x((k+1)T)=ex{kT)+je~Bu⑺dz

kT

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第36頁

仿真方法與數(shù)學(xué)模型(續(xù))

=e"丁x(O)+Je(p、ciT

o

kT

A<kTT>

xQkT)=x(o)+Je-Bu(二)〃乙(2)

o

(4+1)T

x((k+1)T)=e"(z"x(O)+Je"((…(3)

o

(3)-(2)xe”得⑴式。

令k=。,同日寸茬[左T,(々+1)T)上,“(^)="(左丁)

T

x((k+1)T)=eATxQkTy+JeA(TfBdmQkT)

o

USIB7空制系統(tǒng)CAD及仿真一YYX2011年7月6日11時24分第37頁

仿真方法與數(shù)學(xué)模型(續(xù))

-采用零階保持器時采用一階保持器時

對象F=

2(s+1)0.54881000.5488100

-0.183730.65023-0.39463-0.183730.65023-0.39463

(s+2)(sA2+s+2.5)

-0.0520610.394630.89981-0.0520610.394630.89981

G=G=

A=

0.225590.16964

-2.0000000.216660.1433

-1.0000-1.0000-1.58110.0577120.097234

01.58110C=C=

B=

001.2649001.2649

1

D=D=

1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論