




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南京市玄武高級中學2025屆數(shù)學高一上期末質量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件2.若,,則sin=A. B.C. D.3.函數(shù)的零點所在的區(qū)間是A. B.C. D.4.函數(shù)的部分圖象是()A. B.C. D.5.我國著名數(shù)學家華羅庚曾說:“數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結合百般好,隔裂分家萬事休.”在數(shù)學的學習和研究中,常用函數(shù)的圖像來研究函數(shù)的性質,也常用函數(shù)的解析式來琢磨函數(shù)圖像的特征.我們從這個商標中抽象出一個圖象如圖,其對應的函數(shù)可能是()A. B.C. D.6.對于實數(shù)x,“0<x<1”是“x<2”的()條件A.充要 B.既不充分也不必要C.必要不充分 D.充分不必要7.已知函數(shù)的值域為,則實數(shù)a的取值范圍是()A. B.C. D.8.已知,則=A.2 B.C. D.19.函數(shù)的零點個數(shù)為()A.個 B.個C.個 D.個10.在中,,則等于A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知角的頂點為坐標原點,始邊為x軸非負半軸,若是角終邊上的一點,則______12.用半徑為的半圓形紙片卷成一個圓錐,則這個圓錐的高為__________13.設,,,則______14.某扇形的圓心角為2弧度,半徑為,則該扇形的面積為___________15.已知正三棱柱的所有頂點都在球的球面上,且該正三棱柱的底面邊長為2,高為,則球的表面積為________16.已知,是方程的兩根,則__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設函數(shù),其中.(1)求函數(shù)的值域;(2)若,討論在區(qū)間上的單調性;(3)若在區(qū)間上為增函數(shù),求的最大值.18.已知,當時,.(1)若函數(shù)的圖象過點,求此時函數(shù)的解析式;(2)若函數(shù)只有一個零點,求實數(shù)a的值.19.已知函數(shù),且.(1)判斷的奇偶性;(2)證明在上單調遞增;(3)若不等式在上恒成立,求實數(shù)的取值范圍.20.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F(xiàn)分別是AC,B1C的中點(1)求證:EF∥平面AB1C1;(2)求證:平面AB1C⊥平面ABB121.已知,,(1)值;(2)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】分別討論充分性與必要性,可得出答案.詳解】由題意,,顯然可以推出,即充分性成立,而不能推出,即必要性不成立.故“”是“”的充分而不必要條件.故選:A.【點睛】本題考查充分不必要條件,考查不等式的性質,屬于基礎題.2、B【解析】因為,,所以sin==,故選B考點:本題主要考查三角函數(shù)倍半公式的應用點評:簡單題,注意角的范圍3、B【解析】∵,,,,∴函數(shù)的零點所在區(qū)間是故選B點睛:函數(shù)零點問題,常根據(jù)零點存在性定理來判斷,如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的一條曲線,且有,那么,函數(shù)在區(qū)間內(nèi)有零點,即存在使得
這個也就是方程的根.由此可判斷根所在區(qū)間.4、C【解析】首先判斷函數(shù)的奇偶性,即可排除AD,又,即可排除B.【詳解】因為,定義域為R,關于原點對稱,又,故函數(shù)為奇函數(shù),圖象關于原點對稱,故排除AD;又,故排除B.故選:C.5、A【解析】由圖象知函數(shù)的定義域排除選項選項B、D,再根據(jù)不成立排除選項C,即可得正確選項.【詳解】由圖知的定義域為,排除選項B、D,又因為當時,,不符合圖象,所以排除C,故選:A【點睛】思路點睛:排除法是解決函數(shù)圖象問題的主要方法,根據(jù)函數(shù)的定義域、與坐標軸的交點、函數(shù)值的符號、單調性、奇偶性等,從而得出正確結果.6、D【解析】從充分性和必要性的定義,結合題意,即可容易判斷.【詳解】若,則一定有,故充分性滿足;若,不一定有,例如,滿足,但不滿足,故必要性不滿足;故“0<x<1”是“x<2”的充分不必要條件.故選:.7、B【解析】令,要使已知函數(shù)的值域為,需值域包含,對系數(shù)分類討論,結合二次函數(shù)圖像,即可求解.【詳解】解:∵函數(shù)的值域為,令,當時,,不合題意;當時,,此時,滿足題意;當時,要使函數(shù)的值域為,則函數(shù)的值域包含,,解得,綜上,實數(shù)的取值范圍是.故選:B【點睛】關鍵點點睛:要使函數(shù)的值域為,需要作為真數(shù)的函數(shù)值域必須包含,對系數(shù)分類討論,結合二次函數(shù)圖像,即可求解.8、D【解析】.故選.9、C【解析】根據(jù)給定條件直接解方程即可判斷作答.詳解】由得:,即,解得,即,所以函數(shù)的零點個數(shù)為2.故選:C10、C【解析】分析:利用兩角和的正切公式,求出的三角函數(shù)值,求出的大小,然后求出的值即可詳解:由,則,因為位三角形的內(nèi)角,所以,所以,故選C點睛:本題主要考查了兩角和的正切函數(shù)的應用,解答中注意公式的靈活運用以及三角形內(nèi)角定理的應用,著重考查了推理與計算能力二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)余弦函數(shù)的定義可得答案.【詳解】解:∵是角終邊上的一點,∴故答案為:.12、【解析】根據(jù)圓錐的底面周長等于半圓形紙片的弧長建立等式,再根據(jù)半圓形紙片的半徑為圓錐的母線長求解即可.【詳解】由題得,半圓形紙片弧長為,設圓錐的底面半徑為,則,故圓錐的高為.故答案為:【點睛】本題主要考查了圓錐展開圖中的運算,重點是根據(jù)圓錐底面的周長等于展開后扇形的弧長,屬于基礎題.13、【解析】利用向量的坐標運算先求出的坐標,再利用向量的數(shù)量積公式求出的值【詳解】因為,,,所以,所以,故答案為【點睛】本題考查向量的坐標運算,考查向量的數(shù)量積公式,熟記坐標運算法則,準確計算是關鍵,屬于基礎題14、16【解析】利用扇形的面積S,即可求得結論【詳解】∵扇形的半徑為4cm,圓心角為2弧度,∴扇形的面積S16cm2,故答案為:1615、【解析】首先判斷正三棱柱外接球的球心,即上下底面正三角形中心連線的中點,然后構造直角三角形求半徑,代入公式求解.【詳解】如圖:設和分別是上下底面等邊三角形的中心,由題意可知連線的中點就是三棱柱外接球的球心,連接,是等邊三角形,且,,,球的表面積.故答案為:【點睛】本題考查求幾何體外接球的表面積的問題,意在考查空間想象能力和轉化與化歸和計算能力,屬于基礎題型.16、##【解析】將所求式利用兩角和的正弦與兩角差的余弦公式展開,然后根據(jù)商數(shù)關系弦化切,最后結合韋達定理即可求解.【詳解】解:因為,是方程的兩根,所以,所以,故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)在區(qū)間上單調遞增,在上單調遞減(3)【解析】(1)首先化簡函數(shù),再求函數(shù)的值域;(2)利用代入法,求的范圍,再結合函數(shù)的性質,即可求解函數(shù)的單調性;(3)由(1)可知,,首先求的范圍,再根據(jù)函數(shù)的單調區(qū)間,求的最大值.【小問1詳解】,所以函數(shù)的值域是;【小問2詳解】時,,當,,當,即時,函數(shù)單調遞增,當,即時,函數(shù)單調遞減,所以函數(shù)的單調遞增區(qū)間是,函數(shù)的單調遞減區(qū)間是;【小問3詳解】若,則,若函數(shù)在區(qū)間上為增函數(shù),則,解得:,所以的最大值是.18、(1)(2)或.【解析】(1)由計算;(2)只有一個解,由對數(shù)函數(shù)性質轉化為方程只有一個正根,分,和討論【詳解】(1),當時,.函數(shù)的圖象過點,,解得,此時函數(shù).(2),∵函數(shù)只有一個零點,只有一個正解,∴當時,,滿足題意;當時,只有一個正根,若,解得,此時,滿足題意;若方程有兩個相異實根,則兩根之積為,此時方程有一個正根,符合題意;綜上,或.【點睛】本題考查函數(shù)零點與方程根的分布問題.解題時注意函數(shù)的定義域,在轉化時要正確確定方程根的范圍,對多項式方程,要按最高次項系數(shù)為0和不為0進行分類討論19、(1)奇函數(shù)(2)詳見解析(3)【解析】(1)運用代入法,可得m值,計算f(-x)與f(x)比較即可得到結論;(2)運用單調性的定義證明,注意取值、作差和變形、定符號和下結論(3)若不等式在上恒成立,所以在上恒成立,求即可得解.【詳解】(1)即所以函數(shù)的定義域為所以為奇函數(shù)(2)設且,則因為且所以,所以即則在上單調遞增(3)若不等式在上恒成立所以在上恒成立由(2)知在上遞增所以所以【點睛】本題考查函數(shù)的奇偶性和單調性的判斷和證明,考查不等式恒成立,采用分離參數(shù)是常用方法,屬于中檔題20、(1)證明詳見解析;(2)證明詳見解析.【解析】(1)通過證明,來證得平面.(2)通過證明平面,來證得平面平面.【詳解】(1)由于分別是的中點,所以.由于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西安交通工程學院《口腔病理學》2023-2024學年第二學期期末試卷
- 西安職業(yè)技術學院《工管運籌學》2023-2024學年第二學期期末試卷
- 2025河北省安全員C證考試題庫
- 云南中醫(yī)藥大學《農(nóng)業(yè)推廣學》2023-2024學年第二學期期末試卷
- 遼寧特殊教育師范高等??茖W?!妒覂?nèi)專題項目生態(tài)性居住空間設計》2023-2024學年第二學期期末試卷
- 2025年江西省建筑安全員-A證考試題庫附答案
- 銅仁幼兒師范高等??茖W校《口腔組織病理學實驗》2023-2024學年第二學期期末試卷
- 遼陽職業(yè)技術學院《外貿(mào)函電與單證》2023-2024學年第二學期期末試卷
- 北京協(xié)和醫(yī)學院《需求分析與系統(tǒng)設計(雙語)》2023-2024學年第二學期期末試卷
- 四川電力職業(yè)技術學院《WTO-TBT基礎知識》2023-2024學年第二學期期末試卷
- 2025年國家林業(yè)和草原局管理干部學院招聘歷年高頻重點模擬試卷提升(共500題附帶答案詳解)
- 2025年春季開學典禮活動方案【哪吒版】少年無畏凌云志扶搖直上入云蒼
- 【安排表】2024-2025學年下學期學校升旗儀式安排表 主題班會安排表
- 醫(yī)藥零售行業(yè)數(shù)字化轉型-深度研究
- 現(xiàn)場施工人員安全責任協(xié)議書(2篇)
- 醫(yī)院感染與醫(yī)療器械消毒
- 第七章 力 達標測試卷(含答案)2024-2025學年度人教版物理八年級下冊
- 投行競爭格局-洞察分析
- 2024年公務員考試青岡縣《行政職業(yè)能力測驗》深度預測試卷含解析
- 冠脈介入治療術后護理常規(guī)
- 物業(yè)管家客服培訓課件
評論
0/150
提交評論