版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省南通市如東縣馬塘中學(xué)2025屆數(shù)學(xué)高二上期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在棱長(zhǎng)為1的正方體中,P、Q、R分別是棱AB、BC、的中點(diǎn),以PQR為底面作一個(gè)直三棱柱,使其另一個(gè)底面的三個(gè)頂點(diǎn)也都在正方體的表面上,則這個(gè)直三棱柱的體積為()A. B.C. D.2.某中學(xué)舉行黨史學(xué)習(xí)教育知識(shí)競(jìng)賽,甲隊(duì)有、、、、、共名選手其中名男生名女生,按比賽規(guī)則,比賽時(shí)現(xiàn)場(chǎng)從中隨機(jī)抽出名選手答題,則至少有名女同學(xué)被選中的概率是()A. B.C. D.3.設(shè)函數(shù)若函數(shù)有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是()A. B.C. D.4.已知公差不為0的等差數(shù)列中,(m,),則mn的最大值為()A.6 B.12C.36 D.485.以,為焦點(diǎn),且經(jīng)過(guò)點(diǎn)的橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.6.已知直線和直線互相垂直,則等于()A.2 B.C.0 D.7.已知直線與直線垂直,則()A. B.C. D.8.已知函數(shù),其中e是自然數(shù)對(duì)數(shù)的底數(shù),若,則實(shí)數(shù)a的取值范圍是A. B.C. D.9.正四棱錐中,,則直線與平面所成角的正弦值為A. B.C. D.10.圓與圓的位置關(guān)系為()A.內(nèi)切 B.外切C.相交 D.相離11.已知定義在上的函數(shù)的導(dǎo)函數(shù)為,且恒有,則下列不等式一定成立的是()A. B.C. D.12.2019年湖南等8省公布了高考改革綜合方案將采取“”模式即語(yǔ)文、數(shù)學(xué)、英語(yǔ)必考,考生首先在物理、歷史中選擇1門(mén),然后在思想政治、地理、化學(xué)、生物中選擇2門(mén),一名同學(xué)隨機(jī)選擇3門(mén)功課,則該同學(xué)選到歷史、地理兩門(mén)功課的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為棱AA1,BB1的中點(diǎn),G為棱A1B1上的一點(diǎn),且A1G=(0<<2),則點(diǎn)G到平面D1EF的距離為_(kāi)___.14.若正實(shí)數(shù)滿足,則的最大值是________15.若函數(shù),則在點(diǎn)處切線的斜率為_(kāi)_____16.拋物線上的點(diǎn)到其焦點(diǎn)的最短距離為_(kāi)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在四棱錐中,底面ABCD是矩形,點(diǎn)E是線段PA的中點(diǎn).(1)求證:平面EBD;(2)若是等邊三角形,,平面平面ABCD,求點(diǎn)E到平面PDB的距離.18.(12分)已知函數(shù).其中e為然對(duì)數(shù)的底數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若,討論函數(shù)零點(diǎn)個(gè)數(shù)19.(12分)如圖,在正四棱柱中,是上的點(diǎn),滿足為等邊三角形.(1)求證:平面;(2)求二面角的余弦值.20.(12分)在如圖所示的多面體中,且,,,且,,且,平面,(1)求證:;(2)求平面與平面夾角的余弦值21.(12分)如圖,在四棱錐中,側(cè)面底面,是以為斜邊的等腰直角三角形,,,,點(diǎn)E為的中點(diǎn).(1)證明:平面;(2)求二面角的余弦值.22.(10分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)在時(shí)的最大值和最小值;(2)若函數(shù)在區(qū)間存在極小值,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】分別取的中點(diǎn),連接,利用棱柱的定義證明幾何體是三棱柱,再證明平面PQR,得到三棱柱是直三棱柱求解.【詳解】如圖所示:連接,分別取其中點(diǎn),連接,則,且,所以幾何體是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因?yàn)檎襟w的棱長(zhǎng)為1,所以,所以直三棱柱的體積為,故選:C2、D【解析】現(xiàn)場(chǎng)選名選手,共種情況,設(shè),,,四位同學(xué)為男同學(xué)則沒(méi)有女同學(xué)被選中的情況,共有6種,利用對(duì)立事件進(jìn)行求解,即可得到答案;【詳解】現(xiàn)場(chǎng)選名選手,基本事件有:,,,,,,,,,,,,,,共種情況,不妨設(shè),,,四位同學(xué)為男同學(xué)則沒(méi)有女同學(xué)被選中的情況是:,,,,,共種,則至少有一名女同學(xué)被選中的概率為.故選:.3、D【解析】有兩個(gè)零點(diǎn)等價(jià)于與的圖象有兩個(gè)交點(diǎn),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與最值,畫(huà)出函數(shù)圖象,數(shù)形結(jié)合可得結(jié)果.【詳解】解:設(shè),則,所以在上遞減,在上遞增,,且時(shí),,有兩個(gè)零點(diǎn)等價(jià)于與的圖象有兩個(gè)交點(diǎn),畫(huà)出的圖象,如下圖所示,由圖可得,時(shí),與的圖象有兩個(gè)交點(diǎn),此時(shí),函數(shù)有兩個(gè)零點(diǎn),實(shí)數(shù)m的取值范圍是,故選:D.【點(diǎn)睛】方法點(diǎn)睛:本題主要考查分段函數(shù)的性質(zhì)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點(diǎn),以及數(shù)形結(jié)合思想的應(yīng)用,屬于難題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對(duì)應(yīng)關(guān)系,通過(guò)數(shù)與形的相互轉(zhuǎn)化來(lái)解決數(shù)學(xué)問(wèn)題的一種重要思想方法,函數(shù)圖象是函數(shù)的一種表達(dá)形式,它形象地揭示了函數(shù)的性質(zhì),為研究函數(shù)的數(shù)量關(guān)系提供了“形”的直觀性.歸納起來(lái),圖象的應(yīng)用常見(jiàn)的命題探究角度有:1、確定方程根的個(gè)數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質(zhì)4、C【解析】由等差數(shù)列的性質(zhì)可得,再應(yīng)用基本不等式求mn的最大值,注意等號(hào)成立條件.【詳解】由題設(shè)及等差數(shù)列的性質(zhì)知:,又m,,所以,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.所以mn的最大值為.故選:C5、B【解析】根據(jù)焦點(diǎn)在x軸上,c=1,且過(guò)點(diǎn),用排除法可得.也可待定系數(shù)法求解,或根據(jù)橢圓定義求2a可得.【詳解】因?yàn)榻裹c(diǎn)在x軸上,所以C不正確;又因?yàn)閏=1,故排除D;將代入得,故A錯(cuò)誤,所以選B.故選:B6、D【解析】利用直線垂直系數(shù)之間的關(guān)系即可得出.【詳解】解:直線和直線互相垂直,則,解得:.故選:D.7、C【解析】根據(jù)兩直線垂直可直接構(gòu)造方程求得結(jié)果.【詳解】由兩直線垂直得:,解得:.故選:C.8、B【解析】利用函數(shù)的奇偶性將函數(shù)轉(zhuǎn)化為f(M)≤f(N)的形式,再利用單調(diào)性脫去對(duì)應(yīng)法則f,轉(zhuǎn)化為一般的二次不等式求解即可【詳解】由于,,則f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函數(shù)f(x)為奇函數(shù)故原不等式f(a﹣1)+f(2a2)≤0,可轉(zhuǎn)化為f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函數(shù)f(x)單調(diào)遞增,則由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故選B【點(diǎn)睛】本題考查了函數(shù)的奇偶性和單調(diào)性的判定及應(yīng)用,考查了不等式的解法,屬于中檔題9、C【解析】建立合適的空間直角坐標(biāo)系,求出和平面的法向量,直線與平面所成角的正弦值即為與的夾角的余弦值的絕對(duì)值,利用夾角公式求出即可.【詳解】建立如圖所示的空間直角坐標(biāo)系.有圖知,由題得、、、.,,.設(shè)平面的一個(gè)法向量,則,,令,得,,.設(shè)直線與平面所成的角為,則.故選:C.【點(diǎn)睛】本題考查線面角的求解,利用向量法可簡(jiǎn)化分析過(guò)程,直接用計(jì)算的方式解決問(wèn)題,是基礎(chǔ)題.10、B【解析】求出兩圓的圓心距與半徑之和、半徑之差比較大小即可得出正確答案.【詳解】由可得圓心為,半徑,由可得圓心為,半徑,所以圓心距為,所以兩圓相外切,故選:B.11、D【解析】構(gòu)造函數(shù),用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,即可求解.【詳解】根據(jù)題意,令,其中,則,∵,∴,∴在上為單調(diào)遞減函數(shù),∴,即,,則錯(cuò)誤;,即,則錯(cuò)誤;,即,則錯(cuò)誤;,即,則正確;故選:.12、A【解析】先由列舉法計(jì)算出基本事件的總數(shù),然后再求出該同學(xué)選到歷史、地理兩門(mén)功課的基本事件的個(gè)數(shù),基本事件個(gè)數(shù)比即為所求概率.【詳解】由題意,記物理、歷史分別為、,從中選擇1門(mén);記思想政治、地理、化學(xué)、生物為、、、,從中選擇2門(mén);則該同學(xué)隨機(jī)選擇3門(mén)功課,所包含的基本事件有:,,,,,,,,,,,,共個(gè)基本事件;該同學(xué)選到歷史、地理兩門(mén)功課所包含的基本事件有:,,共個(gè)基本事件;該同學(xué)選到物理、地理兩門(mén)功課的概率為.故選:A.【點(diǎn)睛】本題考查求古典概型的概率,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先證明A1B1∥平面D1EF,進(jìn)而將問(wèn)題轉(zhuǎn)化為求點(diǎn)A1到平面D1EF的距離,然后建立空間直角坐標(biāo)系,通過(guò)空間向量的運(yùn)算求得答案.【詳解】由題意得A1B1∥EF,A1B1?平面D1EF,EF?平面D1EF,所以A1B1∥平面D1EF,則點(diǎn)G到平面D1EF的距離等于點(diǎn)A1到平面D1EF的距離.以D為坐標(biāo)原點(diǎn),DA,DC,DD1所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系D-xyz,則D1(0,0,2),E(2,0,1),F(xiàn)(2,2,1),A1(2,0,2),所以,,.設(shè)平面D1EF的法向量為,則,令x=1,則y=0,z=2,所以平面D1EF的一個(gè)法向量.點(diǎn)A1到平面D1EF的距離==,即點(diǎn)G到平面D1EF的距離為.故答案為:.14、4【解析】由基本不等式及正實(shí)數(shù)、滿足,可得的最大值.【詳解】由基本不等式,可得正實(shí)數(shù)、滿足,,可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故的最大值為,故答案為:4.15、【解析】根據(jù)條件求出,,再求即答案.【詳解】∵,∴,則和,得,,∴,,∴,所以在點(diǎn)處切線的斜率為.故答案為:16、1【解析】設(shè)出拋物線上點(diǎn)的坐標(biāo),利用兩點(diǎn)間距離公式建立函數(shù)關(guān)系,借助函數(shù)性質(zhì)計(jì)算作答.【詳解】拋物線的焦點(diǎn),設(shè)點(diǎn)為拋物線上任意一點(diǎn),于是有,當(dāng)且僅當(dāng)時(shí)取“=”,所以當(dāng),即點(diǎn)P為拋物線頂點(diǎn)時(shí),取最小值1.故答案為:1三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】(1)連接交于點(diǎn),連接,由中位線定理結(jié)合線面平行的判定證明即可;(2)由得出點(diǎn)到平面的距離,再由是的中點(diǎn),得出點(diǎn)到平面的距離.【小問(wèn)1詳解】連接交于點(diǎn),連接.因?yàn)榉謩e是的中點(diǎn),所以.又平面EBD,平面EBD,所以平面EBD;【小問(wèn)2詳解】過(guò)點(diǎn)作的垂線,垂足為,連接.因?yàn)槠矫嫫矫鍭BCD,平面平面ABCD,所以平面ABCD,所以,設(shè)點(diǎn)到平面的距離為因?yàn)椋?,因?yàn)辄c(diǎn)是的中點(diǎn),所以點(diǎn)到平面的距離為.18、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;(2)當(dāng)時(shí),無(wú)零點(diǎn);當(dāng)時(shí),有1個(gè)零點(diǎn);當(dāng)時(shí),有2個(gè)零點(diǎn).【解析】(1)求導(dǎo),令導(dǎo)數(shù)大于零求增區(qū)間,令導(dǎo)數(shù)小于零求減區(qū)間;(2)求導(dǎo)數(shù),分、、a>2討論函數(shù)f(x)單調(diào)性和零點(diǎn)即可.【小問(wèn)1詳解】當(dāng)時(shí),,易知定義域?yàn)镽,,當(dāng)時(shí),;當(dāng)或時(shí),故的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;【小問(wèn)2詳解】當(dāng)時(shí),x正0負(fù)0正單增極大值單減極小值單增當(dāng)時(shí),恒成立,∴;當(dāng)時(shí),①當(dāng)時(shí),,∴無(wú)零點(diǎn);②當(dāng)時(shí),,∴有1個(gè)零點(diǎn);③當(dāng)時(shí),,又當(dāng)時(shí),單調(diào)遞增,,∴有2個(gè)零點(diǎn);綜上所述:當(dāng)時(shí),無(wú)零點(diǎn);當(dāng)時(shí),有1個(gè)零點(diǎn);當(dāng)時(shí),有2個(gè)零點(diǎn)【點(diǎn)睛】結(jié)論點(diǎn)睛:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問(wèn)題.(4)考查數(shù)形結(jié)合思想的應(yīng)用19、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)題意證明,,然后根據(jù)線面垂直的判定定理證明問(wèn)題;(2)以,,為軸的正方向建立空間直角坐標(biāo)系,求平面,平面的法向量,求法向量的夾角,根據(jù)二面角的余弦值與法向量的夾角的余弦的關(guān)系確定二面角的余弦值.【小問(wèn)1詳解】由題意,,等邊三角形,,∵平面ABCD,∴,則,即為中點(diǎn).連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,又,平面平面.【小問(wèn)2詳解】由題意直線平面,四邊形為正方形,故以,,為軸的正方向建立空間直角坐標(biāo)系,則,.設(shè)面的法向量為,同理可得面的法向量,∴二面角的余弦值為20、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)線面垂直的性質(zhì)可得,,如圖所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,證明即可得證;(2)求出平面與平面的法向量,再利用向量法即可得解.【小問(wèn)1詳解】證明:因?yàn)槠矫?,平面,平面,所以,且,因?yàn)?,如圖所示,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,則,,,,,,,所以,,,所以;【小問(wèn)2詳解】,設(shè)平面的法向量為,則,即,令,有,設(shè)平面的法向量為,則,即,令,有,設(shè)平面和平面的夾角為,,所以平面和平面的夾角的余弦值為21、(1)見(jiàn)解析;(2)【解析】(1)用線線平行證明線面平行,∴在平面PCD內(nèi)作BE的平行線即可;(2)求二面角的大小,可以用空間向量進(jìn)行求解,根據(jù)已知條件,以AD中點(diǎn)O為原點(diǎn),OB,AD,OP分別為x、y、z軸建立坐標(biāo)系﹒【小問(wèn)1詳解】如圖,取PD中點(diǎn)F,連接EF,F(xiàn)C﹒∵E是AP中點(diǎn),∴EFAD,由題知BCAD,∴BCEF,∴BCFE是平行四邊形,∴BE∥CF,又CF平面PCD,BE平面PCD,∴BE∥平面PCD;【小問(wèn)2詳解】取AD中點(diǎn)O,連接OP,OB,∵是以為斜邊等腰直角三角形,∴OP⊥AD,又平面平面,平面PAD∩平面=AD,∴OP⊥平面ABCD,∵OB平面ABCD,∴OP⊥OB,由BC∥AD,CD⊥AD,AD=2BC知OB⊥OD,∴OP、OB、OD兩兩垂直,故以O(shè)原點(diǎn),OB、OD、OP分別為x、y、z軸,建立空間直角坐標(biāo)系Oxyz,如圖:設(shè)|BC|=1,則B(1,0,0),D(0,1,0),E(0,),P(0,0,1),則,設(shè)平面BED的法向量為,平面PBD的法向量為則,取,,取設(shè)二面角的大小為θ,則cosθ=﹒22、(1)最大值為9,最小值為;(2).【解析】(1)利用
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《營(yíng)業(yè)稅課件》課件
- 《統(tǒng)計(jì)調(diào)查技能模塊》課件
- 《認(rèn)識(shí)寶島臺(tái)灣》課件
- 《王老吉的市場(chǎng)營(yíng)銷》課件
- 《網(wǎng)頁(yè)設(shè)計(jì)與鑒賞》課件
- 2025年中考語(yǔ)文文言文總復(fù)習(xí)-教師版-專題01:文言文閱讀之理解實(shí)詞含義(講義)
- 鞋業(yè)生產(chǎn)線采購(gòu)招標(biāo)合同三篇
- 教育機(jī)構(gòu)話務(wù)員工作總結(jié)
- 藥品醫(yī)療器械銷售心得分享
- 兒童感染科護(hù)理工作總結(jié)
- 新蘇教版五年級(jí)上冊(cè)科學(xué)全冊(cè)期末復(fù)習(xí)知識(shí)點(diǎn)(彩版)
- 部編版小學(xué)一年級(jí)上冊(cè)道德與法治教學(xué)設(shè)計(jì)(第三、第四單元)
- CJJT 164-2011 盾構(gòu)隧道管片質(zhì)量檢測(cè)技術(shù)標(biāo)準(zhǔn)
- 2023年甘肅省定西市中考政治真題 (含解析)
- 中醫(yī)科診療指南及技術(shù)操作規(guī)范學(xué)習(xí)試題
- 胃腸減壓的護(hù)理措施要點(diǎn)課件
- 6.2《青紗帳-甘蔗林》教學(xué)設(shè)計(jì)-【中職專用】高一語(yǔ)文(高教版2023·基礎(chǔ)模塊下冊(cè))
- 25王戎不取道旁李公開(kāi)課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- 科室患者投訴處理管理制度
- 中國(guó)歷史文化知識(shí)競(jìng)賽100題(含答案)
- 學(xué)前兒童健康教育活動(dòng)設(shè)計(jì)智慧樹(shù)知到期末考試答案章節(jié)答案2024年云南國(guó)防工業(yè)職業(yè)技術(shù)學(xué)院
評(píng)論
0/150
提交評(píng)論