版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆湖南省湘潭縣鳳凰中學(xué)高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若,則()A. B.0C.1 D.22.在等差數(shù)列中,已知,則數(shù)列的前9項(xiàng)和為()A. B.13C.45 D.1173.已知正方體中,分別為棱的中點(diǎn),則直線與所成角的余弦值為()A. B.C. D.4.已知是等差數(shù)列,,,則公差為()A.6 B.C. D.25.如圖是等軸雙曲線形拱橋,現(xiàn)拱頂距離水面6米,水面寬米,若水面下降6米,則水面寬()A.米 B.米C.米 D.米6.如圖,棱長(zhǎng)為1的正方體中,為線段上的動(dòng)點(diǎn),則下列結(jié)論錯(cuò)誤的是A.B.平面平面C.的最大值為D.的最小值為7.設(shè)雙曲線C:的左、右焦點(diǎn)分別為,點(diǎn)P在雙曲線C上,若線段的中點(diǎn)在y軸上,且為等腰三角形,則雙曲線C的離心率為()A. B.2C. D.8.宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生"的問題,松長(zhǎng)三尺,竹長(zhǎng)一尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等,如圖是源于其思想的一個(gè)程序框圖,若輸入的,分別為3,1,則輸出的等于A.5 B.4C.3 D.29.設(shè)命題甲:,命題乙:直線與直線平行,則()A.甲是乙的充分不必要條件 B.甲是乙的必要不充分條件C.甲是乙的充要條件 D.甲是乙的既不充分也不必要條件10.已知是雙曲線的左焦點(diǎn),圓與雙曲線在第一象限的交點(diǎn)為,若的中點(diǎn)在雙曲線的漸近線上,則此雙曲線的離心率是()A. B.2C. D.11.下列數(shù)列是遞增數(shù)列的是()A. B.C. D.12.已知,則的最小值是()A.3 B.8C.12 D.20二、填空題:本題共4小題,每小題5分,共20分。13.已知圓被軸截得的弦長(zhǎng)為4,被軸分成兩部分的弧長(zhǎng)之比為1∶2,則圓心的軌跡方程為______,若點(diǎn),,則周長(zhǎng)的最小值為______14.拋物線上一點(diǎn)到其焦點(diǎn)的距離為,則的值為______15.?dāng)?shù)列中,,,,則______16.中小學(xué)生的視力狀況受到社會(huì)的關(guān)注.某市有關(guān)部門從全市6萬(wàn)名高一學(xué)生中隨機(jī)抽取400名學(xué)生,對(duì)他們的視力狀況進(jìn)行一次調(diào)查統(tǒng)計(jì),將所得到的有關(guān)數(shù)據(jù)繪制成頻率分布直方圖,如圖所示,從左至右五個(gè)小組的頻率之比為,則抽取的這400名高一學(xué)生中視力在范圍內(nèi)的學(xué)生有______人.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)如圖,已知平行六面體中,底面ABCD是邊長(zhǎng)為1的正方形,,,設(shè),,(1)用,,表示,并求;(2)求18.(12分)已知函數(shù),.(1)若,求的最大值;(2)若,求證:有且只有一個(gè)零點(diǎn).19.(12分)已知圓,直線(1)判斷直線l與圓C的位置關(guān)系;(2)過點(diǎn)作圓C的切線,求切線的方程20.(12分)直線經(jīng)過點(diǎn),且與圓相交與兩點(diǎn),截得的弦長(zhǎng)為,求的方程.21.(12分)某牧場(chǎng)今年初牛的存欄數(shù)為1200,預(yù)計(jì)以后每年存欄數(shù)的增長(zhǎng)率為8%,且每年年底賣出100頭牛,設(shè)牧場(chǎng)從今年起每年年初的計(jì)劃存欄數(shù)依次為,,….(參考數(shù)據(jù):,,.)(1)寫出一個(gè)遞推公式,表示與之間的關(guān)系;(2)將(1)中的遞推關(guān)系表示成的形式,其中k,r為常數(shù);(3)求的值(精確到1).22.(10分)已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù).(1)若為的極值點(diǎn),求的單調(diào)區(qū)間和最大值;(2)是否存在實(shí)數(shù),使得的最大值是?若存在,求出的值;若不存在,說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】求出函數(shù)的導(dǎo)數(shù),直接代入即可求值.【詳解】因?yàn)椋?,所以,所?故選:D.2、C【解析】根據(jù)給定的條件利用等差數(shù)列的性質(zhì)計(jì)算作答【詳解】在等差數(shù)列中,因,所以.故選:C3、D【解析】以D為原點(diǎn)建立空間直角坐標(biāo)系,求出E,F,B,D1點(diǎn)的坐標(biāo),利用直線夾角的向量求法求解【詳解】如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)正方體的邊長(zhǎng)為2,則,,,,,直線與所成角的余弦值為:.故選D【點(diǎn)睛】本題主要考查了空間向量的應(yīng)用及向量夾角的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題4、C【解析】設(shè)的首項(xiàng)為,把已知的兩式相減即得解.【詳解】解:設(shè)的首項(xiàng)為,根據(jù)題意得,兩式相減得.故選:C5、B【解析】以雙曲線的對(duì)稱中心為原點(diǎn),焦點(diǎn)所在對(duì)稱軸為y軸建立直角坐標(biāo)系,求出雙曲線方程,數(shù)形結(jié)合即可求解.【詳解】如圖所示,以雙曲線的對(duì)稱中心為原點(diǎn),焦點(diǎn)所在對(duì)稱軸為y軸建立直角坐標(biāo)系,設(shè)雙曲線標(biāo)準(zhǔn)方程為:(a>0),則頂點(diǎn),,將A點(diǎn)代入雙曲線方程得,,當(dāng)水面下降6米后,,代入雙曲線方程得,,∴水面寬:米.故選:B.6、C【解析】∵,,∴面,面,∴,A正確;∵平面即為平面,平面即為平面,且平面,∴平面平面,∴平面平面,∴B正確;當(dāng)時(shí),為鈍角,∴C錯(cuò);將面與面沿展成平面圖形,線段即為的最小值,在中,,利用余弦定理解三角形得,即,∴D正確,故選C考點(diǎn):立體幾何中的動(dòng)態(tài)問題【思路點(diǎn)睛】立體幾何問題的求解策略是通過降維,轉(zhuǎn)化為平面幾何問題,具體方法表現(xiàn)為:
求空間角、距離,歸到三角形中求解;2.對(duì)于球的內(nèi)接外切問題,作適當(dāng)?shù)慕孛?,既要能反映出位置關(guān)系,又要反映出數(shù)量關(guān)系;求曲面上兩點(diǎn)之間的最短距離,通過化曲為直轉(zhuǎn)化為同一平面上兩點(diǎn)間的距離7、A【解析】根據(jù)是等腰直角三角形,再表示出的長(zhǎng),利用三角形的幾何性質(zhì)即可求得答案.【詳解】線段的中點(diǎn)在y軸上,設(shè)的中點(diǎn)為M,因?yàn)镺為的中點(diǎn),所以,而,則,為等腰三角形,故,由,得,又為等腰直角三角形,故,即,解得,即,故選:A.8、B【解析】由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案【詳解】解:當(dāng)n=1時(shí),a=3,b=2,滿足進(jìn)行循環(huán)的條件,當(dāng)n=2時(shí),a,b=4,滿足進(jìn)行循環(huán)的條件,當(dāng)n=3時(shí),a,b=8,滿足進(jìn)行循環(huán)的條件,當(dāng)n=4時(shí),a,b=16,不滿足進(jìn)行循環(huán)的條件,故輸出的n值為4,故選:B【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用模擬循環(huán)的方法解答9、A【解析】根據(jù)充分條件和必要條件的定義,結(jié)合兩直線平行的性質(zhì)進(jìn)行求解即可.【詳解】當(dāng)時(shí),直線的方程為,直線方程為,此時(shí),直線與直線平行,即甲乙;直線和直線平行,則,解得或,即乙甲;則甲是乙的充分不必要條件.故選:.10、A【解析】根據(jù)雙曲線的幾何性質(zhì)和平面幾何性質(zhì),建立關(guān)于a,b,c的方程,從而可求得雙曲線的離心率得選項(xiàng).【詳解】由題意可設(shè)右焦點(diǎn)為,因?yàn)?,且圓:,所以點(diǎn)在以焦距為直徑的圓上,則,設(shè)的中點(diǎn)為點(diǎn),則為的中位線,所以,則,又點(diǎn)在漸近線上,所以,且,則,,所以,所以,則在中,可得,,即,解得,所以,故選:A【點(diǎn)睛】方法點(diǎn)睛:(1)求雙曲線的離心率時(shí),將提供的雙曲線的幾何關(guān)系轉(zhuǎn)化為關(guān)于雙曲線基本量的方程或不等式,利用和轉(zhuǎn)化為關(guān)于e的方程或不等式,通過解方程或不等式求得離心率的值或取值范圍(2)對(duì)于焦點(diǎn)三角形,要注意雙曲線定義的應(yīng)用,運(yùn)用整體代換的方法可以減少計(jì)算量11、C【解析】分別判斷的符號(hào),從而可得出答案.【詳解】解:對(duì)于A,,則,所以數(shù)列為遞減數(shù)列,故A不符合題意;對(duì)于B,,則,所以數(shù)列為遞減數(shù)列,故B不符合題意;對(duì)于C,,則,所以數(shù)列為遞增數(shù)列,故C符合題意;對(duì)于D,,則,所以數(shù)列遞減數(shù)列,故D不符合題意.故選:C.12、A【解析】利用基本不等式進(jìn)行求解即可.【詳解】因?yàn)?,所以,?dāng)且僅當(dāng)時(shí)取等號(hào),即當(dāng)時(shí)取等號(hào),故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】設(shè),圓半徑為,進(jìn)而根據(jù)題意得,,進(jìn)而得其軌跡方程為雙曲線,再根據(jù)雙曲線的定義,將周長(zhǎng)轉(zhuǎn)化為求的最小值,進(jìn)而求解.【詳解】解:如圖1,因?yàn)閳A被軸截得的弦長(zhǎng)為4,被軸分成兩部分的弧長(zhǎng)之比為1∶2,所以,,所以中點(diǎn),則,,所以,故設(shè),圓半徑為,則,,,所以,即所以圓心的軌跡方程為,表示雙曲線,焦點(diǎn)為,,如圖2,連接,由雙曲線的定義得,即,所以周長(zhǎng)為,因?yàn)椋灾荛L(zhǎng)的最小值為故答案為:;.14、【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,利用拋物線的定義將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,再利用點(diǎn)到直線的距離公式進(jìn)行求解.【詳解】將拋物線化為,由拋物線定義得點(diǎn)到準(zhǔn)線的距離為,即,解得故答案為:.15、##0.5【解析】直接計(jì)算得到答案.【詳解】∵,,則,.故答案為:.16、50【解析】利用頻率分布直方圖的性質(zhì)求解即可.【詳解】第五組的頻率為,第一組所占的頻率為,則隨機(jī)抽取400名學(xué)生視力在范圍內(nèi)的學(xué)生約有人.故答案為:50.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1),(2)0【解析】(1)把,,作為基底,利用空間向量基本定理表示,然后根據(jù)已知的數(shù)據(jù)求,(2)先把用基底表示,然后化簡(jiǎn)求解【小問1詳解】因?yàn)?,,?所以,因?yàn)榈酌鍭BCD是邊長(zhǎng)為1的正方形,,,所以【小問2詳解】因?yàn)?,底面ABCD是邊長(zhǎng)為1的正方形,,,所以18、(1)(2)證明見解析【解析】(1)利用導(dǎo)數(shù)判斷原函數(shù)單調(diào)性,從而可求最值.(2)求導(dǎo)后發(fā)現(xiàn)導(dǎo)數(shù)中無(wú)參數(shù),故單調(diào)性與(1)中所求一致,然后利用零點(diǎn)存在定理結(jié)合的范圍,以及函數(shù)單調(diào)性證明在定義域內(nèi)有且只有一個(gè)零點(diǎn).【小問1詳解】若,則,其定義域?yàn)?,∴,由,得,∴?dāng)時(shí),;當(dāng)時(shí),,∴在上單調(diào)遞增,在上單調(diào)遞減,∴【小問2詳解】證明:,由(Ⅰ)知在上單調(diào)遞增,在上單調(diào)遞誠(chéng),∵,∴當(dāng)時(shí),,故在上無(wú)零點(diǎn);當(dāng)時(shí),,∵且,∴在上有且只有一個(gè)零點(diǎn).綜上,有且只有一個(gè)零點(diǎn).19、(1)相交.(2)或.【解析】(1)先判斷出直線恒過定點(diǎn)(2,1),由(2,1)在圓內(nèi),即可判斷;(2)分斜率存在與不存在兩種情況,利用幾何法求解.【小問1詳解】直線方程,即,則直線恒過定點(diǎn)(2,1).因?yàn)?,則點(diǎn)(2,1)位于圓的內(nèi)部,故直線與圓相交.【小問2詳解】直線斜率不存在時(shí),直線滿足題意;②直線斜率存在的時(shí)候,設(shè)直線方程為,即.因?yàn)橹本€與圓相切,所以圓心到直線的距離等于半徑,即,解得:,則直線方程為:.綜上可得,直線方程或.20、或【解析】直線截圓得的弦長(zhǎng)為,結(jié)合圓的半徑為5,利用勾股定理可得圓心到直線的距離,再利用點(diǎn)到直線的距離公式列方程求出直線斜率,由點(diǎn)斜式可得結(jié)果.【詳解】設(shè)直線的方程為,即,因?yàn)閳A的半徑為5,截得的弦長(zhǎng)為所以圓心到直線的距離,即或,∴所求直線的方程為或.【點(diǎn)睛】本題主要考查點(diǎn)到直線距離公式以及圓的弦長(zhǎng)的求法,求圓的弦長(zhǎng)有兩種方法:一是利用弦長(zhǎng)公式,結(jié)合韋達(dá)定理求解;二是利用半弦長(zhǎng),弦心距,圓半徑構(gòu)成直角三角形,利用勾股定理求解.21、(1)(2)(3)10626【解析】(1)根據(jù)題意,建立遞推關(guān)系即可;(2)利用待定系數(shù)法求解得.(3)利用等比數(shù)列求和公式,結(jié)合已知數(shù)據(jù)求解即可.【小問1詳解】解:因?yàn)槟衬翀?chǎng)今年初牛的存欄數(shù)為1200,預(yù)計(jì)以后每年存欄數(shù)的增長(zhǎng)率為8%,且每年年底賣出100頭牛,所以,且.【小問2詳解】解:將化成,因?yàn)樗员容^的系數(shù),可得,解得.所以(1)中的遞推公式可以化為.【小問3詳解】解:由(2)可知,數(shù)列是以為首項(xiàng),1.08為公比的等比數(shù)列,則.所以.22、(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;最大值為;(2)存在,.【解析】(1)利用為的極值點(diǎn)求得,進(jìn)而可得函數(shù)的單調(diào)區(qū)間和最大值;(2)對(duì)導(dǎo)函數(shù),分與進(jìn)行討論,得函數(shù)的單調(diào)性進(jìn)而求
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年青??瓦\(yùn)資格證應(yīng)用能力考試題目
- 2024年玉溪客運(yùn)從業(yè)資格證的考題
- 2024年廈門客運(yùn)資格證考試題目
- 佛山市普通高中2025屆英語(yǔ)高三上期末綜合測(cè)試試題含解析
- 云南省昭通市三中2025屆高三生物第一學(xué)期期末監(jiān)測(cè)模擬試題含解析
- 2025屆四川省南充市高級(jí)中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析
- 山東省日照市莒縣、嵐山2025屆生物高三第一學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析
- 西安市重點(diǎn)中學(xué)2025屆高三生物第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析
- 2025屆廣東省廣州市八區(qū)聯(lián)考高一上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析
- 福建省泉州市泉港區(qū)一中2025屆英語(yǔ)高三第一學(xué)期期末統(tǒng)考模擬試題含解析
- 吉林市2024-2025學(xué)年度高三第一次模擬測(cè)試 (一模)數(shù)學(xué)試卷(含答案解析)
- 期中測(cè)試卷(1-3單元)(試題)-2024-2025學(xué)年蘇教版數(shù)學(xué)六年級(jí)上冊(cè)
- 電動(dòng)汽車充電設(shè)施及場(chǎng)站測(cè)試評(píng)價(jià)規(guī)范第3部分:場(chǎng)站服務(wù)能力
- 2025屆北京西城14中高二生物第一學(xué)期期末檢測(cè)模擬試題含解析
- 部編版二年級(jí)上冊(cè)-課文一-快樂讀書吧:讀讀童話故事-孤獨(dú)的小螃蟹(課件)(共26張課件)
- 消防安全方案及措施
- 《春秋》導(dǎo)讀學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 工商管理大類的課程設(shè)計(jì)
- 2024-2025學(xué)年初中英語(yǔ)七年級(jí)上冊(cè)(外研版)上課課件 Unit 5 Fantastic friends 2.Developing ideas
- 2024年高考數(shù)學(xué)試卷(北京)(空白卷)
- 高中體育 《籃球:運(yùn)球雙手胸前傳、接球》說(shuō)課稿
評(píng)論
0/150
提交評(píng)論