2025屆廣東省中山紀(jì)念中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第1頁
2025屆廣東省中山紀(jì)念中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第2頁
2025屆廣東省中山紀(jì)念中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第3頁
2025屆廣東省中山紀(jì)念中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第4頁
2025屆廣東省中山紀(jì)念中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆廣東省中山紀(jì)念中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)是公差的等差數(shù)列,如果,那么()A. B.C. D.2.已知拋物線的焦點(diǎn)恰為雙曲線的一個(gè)頂點(diǎn),的另一頂點(diǎn)為,與在第一象限內(nèi)的交點(diǎn)為,若,則直線的斜率為()A. B.C. D.3.已知是偶函數(shù)的導(dǎo)函數(shù),.若時(shí),,則使得不等式成立的的取值范圍是()A. B.C. D.4.若數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,則下列不等式一定成立的是()A. B.C. D.5.設(shè)O為正方形ABCD的中心,在O,A,B,C,D中任取3點(diǎn),則取到的3點(diǎn)共線的概率為()A. B.C. D.6.設(shè)集合或,,則()A. B.C. D.7.拋物線的準(zhǔn)線方程為()A. B.C. D.8.已知直線m經(jīng)過,兩點(diǎn),則直線m的斜率為()A.-2 B.C. D.29.設(shè)實(shí)數(shù)x,y滿足,則目標(biāo)函數(shù)的最大值是()A. B.C.16 D.3210.一動(dòng)圓與圓外切,而與圓內(nèi)切,那么動(dòng)圓的圓心的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.雙曲線的一支11.若函數(shù)在定義域上單調(diào)遞增,則實(shí)數(shù)的取值范圍為()A. B.C. D.12.命題“,”的否定是()A., B.,C, D.,二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標(biāo)系中,點(diǎn)到x軸的距離為___________.14.已知集合,,將中的所有元素按從大到小的順序排列構(gòu)成一個(gè)數(shù)列,則數(shù)列的前n項(xiàng)和的最大值為___________.15.函數(shù)的單調(diào)遞減區(qū)間是____16.已知函數(shù)定義域?yàn)?,值域?yàn)椋瑒t______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(I)當(dāng)時(shí),求曲線在處的切線方程;(Ⅱ)若當(dāng)時(shí),,求的取值范圍.18.(12分)如圖,已知橢圓的焦點(diǎn)是圓與x軸的交點(diǎn),橢圓C的長半軸長等于圓O的直徑(1)求橢圓C的方程;(2)F為橢圓C的右焦點(diǎn),A為橢圓C的右頂點(diǎn),點(diǎn)B在線段FA上,直線BD,BE與橢圓C的一個(gè)交點(diǎn)分別是D,E,直線BD與直線BE的傾斜角互補(bǔ),直線BD與圓O相切,設(shè)直線BD的斜率為.當(dāng)時(shí),求k19.(12分)已知是公差不為零等差數(shù)列,,且、、成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式:(2)設(shè).?dāng)?shù)列{}的前項(xiàng)和為,求證:20.(12分)如圖,是平行四邊形,已知,,平面平面.(1)證明:;(2)若,求平面與平面所成二面角的平面角的余弦值21.(12分)已知命題p:方程的曲線是焦點(diǎn)在y軸上的雙曲線;命題q:方程無實(shí)根.若p或q為真,¬q為真,求實(shí)數(shù)m的取值范圍.22.(10分)已知等差數(shù)列的前n項(xiàng)和為Sn,S9=81,,求:(1)Sn;(2)若S3、、Sk成等比數(shù)列,求k

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由已知可得,即可得解.【詳解】由已知可得.故選:D.2、D【解析】根據(jù)題意,列出的方程組,解得,再利用斜率公式即可求得結(jié)果.【詳解】因?yàn)閽佄锞€的焦點(diǎn),由題可知;又點(diǎn)在拋物線上,故可得;又,聯(lián)立方程組可得,整理得,解得(舍)或,此時(shí),又,故直線的斜率為.故選:D.3、C【解析】構(gòu)造函數(shù),分析函數(shù)在上的單調(diào)性,將所求不等式變形為,可得出關(guān)于的不等式,即可得解.【詳解】構(gòu)造函數(shù),其中,則,所以,函數(shù)為上的奇函數(shù),當(dāng)時(shí),,且不恒為零,所以,函數(shù)在上為增函數(shù),且該函數(shù)在上也為增函數(shù),故函數(shù)在上為增函數(shù),因?yàn)?,則,由得,可得,解得故選:C.4、D【解析】對(duì)選項(xiàng)A,令即可檢驗(yàn);對(duì)選項(xiàng)B,令即可檢驗(yàn);對(duì)選項(xiàng)C,令即可檢驗(yàn);對(duì)選項(xiàng)D,設(shè)出等差數(shù)列的首項(xiàng)和公比,然后作差即可.【詳解】若,則可得:,故選項(xiàng)A錯(cuò)誤;若,則可得:,故選項(xiàng)B錯(cuò)誤;若,則可得:,故選項(xiàng)C錯(cuò)誤;不妨設(shè)的首項(xiàng)為,公差為,則有:則有:,故選項(xiàng)D正確故選:D5、A【解析】列出從5個(gè)點(diǎn)選3個(gè)點(diǎn)的所有情況,再列出3點(diǎn)共線的情況,用古典概型的概率計(jì)算公式運(yùn)算即可.【詳解】如圖,從5個(gè)點(diǎn)中任取3個(gè)有共種不同取法,3點(diǎn)共線只有與共2種情況,由古典概型的概率計(jì)算公式知,取到3點(diǎn)共線的概率為.故選:A【點(diǎn)晴】本題主要考查古典概型的概率計(jì)算問題,采用列舉法,考查學(xué)生數(shù)學(xué)運(yùn)算能力,是一道容易題.6、B【解析】根據(jù)交集的概念和運(yùn)算直接得出結(jié)果.【詳解】由題意知,.故選:B.7、A【解析】將拋物線的方程化成標(biāo)準(zhǔn)形式,即可得到答案;【詳解】拋物線的方程化成標(biāo)準(zhǔn)形式,準(zhǔn)線方程為,故選:A.8、A【解析】根據(jù)斜率公式求得正確答案.【詳解】直線的斜率為:.故選:A9、C【解析】求的最大值即求的最大值,根據(jù)約束條件畫出可行域,將目標(biāo)函數(shù)看成直線,直線經(jīng)過可行域內(nèi)的點(diǎn),將目標(biāo)與直線的截距建立聯(lián)系,然后得到何時(shí)目標(biāo)值取得要求的最值,進(jìn)而求得的最大值,最后求出的最大值.【詳解】要求的最大值即求的最大值.根據(jù)實(shí)數(shù),滿足的條件作出可行域,如圖.將目標(biāo)函數(shù)化為.則表示直線在軸上的截距的相反數(shù).要求的最大值,即求直線在軸上的截距最小值.如圖當(dāng)直線過點(diǎn)時(shí),在軸上的截距最小值.由,解得所以的最大值為,則的最大值為16.故選:C.10、A【解析】依據(jù)定義法去求動(dòng)圓的圓心的軌跡即可解決.【詳解】設(shè)動(dòng)圓的半徑為r,又圓半徑為1,圓半徑為8,則,,可得,又則動(dòng)圓的圓心的軌跡是以為焦點(diǎn)長軸長為9的橢圓.故選:A11、D【解析】函數(shù)在定義域上單調(diào)遞增等價(jià)于在上恒成立,即在上恒成立,然后易得,最后求出范圍即可.【詳解】函數(shù)的定義域?yàn)?,,在定義域上單調(diào)遞增等價(jià)于在上恒成立,即在上恒成立,即在上恒成立,分離參數(shù)得,所以,即.【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍的通解:若在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立;若在區(qū)間上單調(diào)遞減,則在區(qū)間上恒成立;然后再利用分離參數(shù)求得參數(shù)的取值范圍即可.12、D【解析】由含量詞命題否定的定義,寫出命題的否定即可【詳解】命題“,”的否定是:,,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由空間直角坐標(biāo)系中點(diǎn)到軸的距離為計(jì)算可得【詳解】解:空間直角坐標(biāo)系中,點(diǎn)到軸的距離為故答案為:14、【解析】由題意設(shè),,根據(jù)可得,從而,即可得出答案.【詳解】設(shè),由,得,由,得中的元素滿足,即,可得所以,由,所以所以,要使得數(shù)列的前n項(xiàng)和的最大值,即求出數(shù)列中所以滿足的項(xiàng)的和即可.即,得,則所以數(shù)列的前n項(xiàng)和的最大值為故答案為:147215、【解析】求導(dǎo),根據(jù)可得答案.【詳解】由題意,可得,令,即,解得,即函數(shù)的遞減區(qū)間為.故答案為:.【點(diǎn)睛】本題考查運(yùn)用導(dǎo)函數(shù)的符號(hào),研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.16、3【解析】根據(jù)定義域和值域,結(jié)合余弦函數(shù)的圖像與性質(zhì)即可求得的值,進(jìn)而得解.【詳解】因?yàn)?,由余弦函?shù)的圖像與性質(zhì)可得,則,由值域?yàn)榭傻茫?,故答案為?.【點(diǎn)睛】本題考查了余弦函數(shù)圖像與性質(zhì)的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(Ⅰ)先求的定義域,再求,,,由直線方程的點(diǎn)斜式可求曲線在處的切線方程為(Ⅱ)構(gòu)造新函數(shù),對(duì)實(shí)數(shù)分類討論,用導(dǎo)數(shù)法求解.試題解析:(I)定義域?yàn)?當(dāng)時(shí),,曲線在處的切線方程為(II)當(dāng)時(shí),等價(jià)于設(shè),則,(i)當(dāng),時(shí),,故在上單調(diào)遞增,因此;(ii)當(dāng)時(shí),令得.由和得,故當(dāng)時(shí),,在單調(diào)遞減,因此.綜上,的取值范圍是【考點(diǎn)】導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性【名師點(diǎn)睛】求函數(shù)的單調(diào)區(qū)間的方法:(1)確定函數(shù)y=f(x)定義域;(2)求導(dǎo)數(shù)y′=f′(x);(3)解不等式f′(x)>0,解集在定義域內(nèi)的部分為單調(diào)遞增區(qū)間;(4)解不等式f′(x)<0,解集在定義域內(nèi)的部分為單調(diào)遞減區(qū)間18、(1);(2)-1【解析】(1)由題設(shè)可得,求出參數(shù)b,即可寫出橢圓C的方程;(2)延長線段DB交橢圓C于點(diǎn),根據(jù)對(duì)稱性設(shè)B,為,,聯(lián)立橢圓方程,應(yīng)用韋達(dá)定理并結(jié)合已知條件可得,直線與圓相切可得,進(jìn)而求參數(shù)t,即可求直線BD的斜率.【小問1詳解】因?yàn)閳A與x軸的交點(diǎn)分別為,,所以橢圓C的焦點(diǎn)分別為,,∴,根據(jù)條件得,∴,故橢圓C的方程為【小問2詳解】延長線段DB交橢圓C于點(diǎn),因直線BD與直線BE的傾斜角互補(bǔ),根據(jù)對(duì)稱性得由條件可設(shè)B的坐標(biāo)為,設(shè)D,的縱坐標(biāo)分別為,,直線的方程為,由于,即,所以由得:∴,∴①,②,由①得:,代入②得,∴∵直線與圓相切,∴,即∴,解得,又,∴,故,即直線BD斜率【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:將已知線段的長度關(guān)系轉(zhuǎn)化為D,的縱坐標(biāo)的數(shù)量關(guān)系,設(shè)直線的含參方程,聯(lián)立橢圓方程及其與圓的相切求參數(shù)關(guān)系,進(jìn)而求參數(shù)即可.19、(1);(2)證明見解析.【解析】(1)設(shè)等差數(shù)列的公差為,則,根據(jù)題意可得出關(guān)于的方程,求出的值,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)相消法求出,即可證得結(jié)論成立.【小問1詳解】解:設(shè)等差數(shù)列的公差為,則,由題意可得,即,整理可得,,解得,因此,.【小問2詳解】證明:,因此,,故原不等式得證.20、(1)見解析;(2).【解析】(1)推導(dǎo)出,取BC的中點(diǎn)F,連結(jié)EF,可推出,從而平面,進(jìn)而,由此得到平面,從而;(2)以為坐標(biāo)原點(diǎn),,所在直線分別為,軸,以過點(diǎn)且與平行的直線為軸,建立空間直角坐標(biāo)系,利用向量法能求出平面與平面所成二面角的余弦值【詳解】(1)∵是平行四邊形,且∴,故,即取BC的中點(diǎn)F,連結(jié)EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以為坐標(biāo)原點(diǎn),所在直線分別為軸,建立空間直角坐標(biāo)系(如圖),則∴設(shè)平面的法向量為,則,即得平面一個(gè)法向量為由(1)知平面,所以可設(shè)平面的法向量為設(shè)平面與平面所成二面角的平面角為,則即平面與平面所成二面角的平面角的余弦值為.【點(diǎn)睛】用空間向量求解立體幾何問題的注意點(diǎn)(1)建立坐標(biāo)系時(shí)要確保條件具備,即要證明得到兩兩垂直的三條直線,建系后要準(zhǔn)確求得所需點(diǎn)的坐標(biāo)(2)用平面的法向量求二面角的大小時(shí),要注意向量的夾角與二面角大小間的關(guān)系,這點(diǎn)需要通過觀察圖形來判斷二面角是銳角還是鈍角,然后作出正確的結(jié)論21、.【解析】計(jì)算命題p:;命題;根據(jù)p或q為真,¬q為真得到真假,計(jì)算得到答案.【詳解】若方程的曲線是焦點(diǎn)在軸上的雙曲線,則滿足,即,即,即若

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論