2025屆甘肅天水市太京中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第1頁(yè)
2025屆甘肅天水市太京中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第2頁(yè)
2025屆甘肅天水市太京中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第3頁(yè)
2025屆甘肅天水市太京中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第4頁(yè)
2025屆甘肅天水市太京中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆甘肅天水市太京中學(xué)高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列推理中屬于歸納推理且結(jié)論正確的是()A.由,求出,,,…,推斷:數(shù)列的前項(xiàng)和B.由滿足對(duì)都成立,推斷:為奇函數(shù)C.由半徑為的圓的面積,推斷單位圓的面積D.由,,,…,推斷:對(duì)一切,2.已知集合A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B=()A.{-2,-1,0,1} B.{-1,0,1}C.{-2,-1} D.{-2,-1,0}3.為了更好地研究雙曲線,某校高二年級(jí)的一位數(shù)學(xué)老師制作了一個(gè)如圖所示的雙曲線模型.已知該模型左、右兩側(cè)的兩段曲線(曲線與曲線)為某雙曲線(離心率為2)的一部分,曲線與曲線中間最窄處間的距離為,點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)均關(guān)于該雙曲線的對(duì)稱中心對(duì)稱,且,則()A. B.C. D.4.已知直線:和:,若,則實(shí)數(shù)的值為()A. B.3C.-1或3 D.-15.已知p:,q:,那么p是q的()A.充要條件 B.必要不充分條件C.充分不必要條件 D.既不充分也不必要條件6.等比數(shù)列中,,,則()A. B.C. D.7.已知在等比數(shù)列中,,,則()A.9或 B.9C.27或 D.278.在直三棱柱中,,M,N分別是,的中點(diǎn),,則AN與BM所成角的余弦值為()A. B.C. D.9.已知為偶函數(shù),且當(dāng)時(shí),,其中為的導(dǎo)數(shù),則不等式的解集為()A. B.C. D.10.若,則的虛部為()A. B.C. D.11.等比數(shù)列的前項(xiàng)和為,前項(xiàng)積為,,當(dāng)最小時(shí),的值為()A.3 B.4C.5 D.612.已知拋物線上一橫坐標(biāo)為5的點(diǎn)到焦點(diǎn)的距離為6,且該拋物線的準(zhǔn)線與雙曲線(,)的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.4C.6 D.9二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)數(shù)列的前n項(xiàng)和為,若,且是等差數(shù)列.則的值為_(kāi)_________14.已知為拋物線上任意一點(diǎn),為拋物線的焦點(diǎn),為平面內(nèi)一定點(diǎn),則的最小值為_(kāi)_________.15.為增強(qiáng)廣大師生生態(tài)文明意識(shí),大力推進(jìn)國(guó)家森林城市建設(shè)創(chuàng)建進(jìn)程,某班26名同學(xué)在一段直線公路一側(cè)植樹(shù),每人植一棵(各自挖坑種植),相鄰兩棵樹(shù)相距均為10米,在同學(xué)們挖坑期間,運(yùn)到的樹(shù)苗集中放置在了某一樹(shù)坑旁邊,然后每位同學(xué)挖好自己的樹(shù)坑后,均從各自樹(shù)坑出發(fā)去領(lǐng)取樹(shù)苗.記26位同學(xué)領(lǐng)取樹(shù)苗往返所走的路程總和為,則的最小值為_(kāi)_____米16.《周髀算經(jīng)》是中國(guó)最古老的天文學(xué)和數(shù)學(xué)著作,書中提到:從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣的日影子長(zhǎng)依次成等差數(shù)列,若冬至、立春、春分的日影子長(zhǎng)的和是37.5尺,芒種的日影子長(zhǎng)為4.5尺,則立夏的日影子長(zhǎng)為_(kāi)__________尺.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓的圓心在直線上,且圓經(jīng)過(guò)點(diǎn)與點(diǎn).(1)求圓的方程;(2)過(guò)點(diǎn)作圓的切線,求切線所在的直線的方程.18.(12分)已知如圖①,在菱形ABCD中,且,為AD的中點(diǎn),將沿BE折起使,得到如圖②所示的四棱錐,在四棱錐中,求解下列問(wèn)題:(1)求證:BC平面ABE;(2)若P為AC中點(diǎn),求二面角的余弦值.19.(12分)已知直線,,分別求實(shí)數(shù)的值,使得:(1);(2);(3)與相交.20.(12分)設(shè)函數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍21.(12分)曲線的左、右焦點(diǎn)分別為,左、右頂點(diǎn)分別為,C上的點(diǎn)M滿足,且直線的斜率之積等于(1)求C的方程;(2)過(guò)點(diǎn)的直線l交C于A,B兩點(diǎn),若,其中,證明:22.(10分)已知正項(xiàng)數(shù)列的首項(xiàng)為,且滿足,(1)求證:數(shù)列為等比數(shù)列;(2)記,求數(shù)列的前n項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)歸納推理是由特殊到一般,推導(dǎo)結(jié)論可得結(jié)果.【詳解】對(duì)于A,由,求出,,,…,推斷:數(shù)列的前項(xiàng)和,是由特殊推導(dǎo)出一般性的結(jié)論,且,故A正確;B和C屬于演繹推理,故不正確;對(duì)于D,屬于歸納推理,但時(shí),結(jié)論不正確,故D不正確.故選:A.2、D【解析】根據(jù)集合交集的運(yùn)算法則計(jì)算即可.【詳解】∵A={x|-2≤x≤0},B={-2,-1,0,1},則A∩B={-2,-1,0}.故選:D.3、D【解析】依題意以雙曲線的對(duì)稱中心為坐標(biāo)原點(diǎn)建系,設(shè)雙曲線的方程為,根據(jù)已知求得,點(diǎn)縱坐標(biāo)代入計(jì)算即可求得橫坐標(biāo)得出結(jié)果.【詳解】以雙曲線的對(duì)稱中心為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,因?yàn)殡p曲線的離心率為2,所以可設(shè)雙曲線的方程為,依題意可得,則,即雙曲線的方程為.因?yàn)?,所以的縱坐標(biāo)為18.由,得,故.故選:D.4、D【解析】利用兩直線平行列式求出a值,再驗(yàn)證即可判斷作答.【詳解】因,則,解得或,當(dāng)時(shí),與重合,不符合題意,當(dāng)時(shí),,符合題意,所以實(shí)數(shù)的值為-1.故選:D5、C【解析】若p成立則q成立且若q成立不能得到p一定成立,p是q充分不必要條件.【詳解】因?yàn)?gt;0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要條件.故選:C.6、D【解析】設(shè)公比為,依題意得到方程,即可求出,再根據(jù)等比數(shù)列通項(xiàng)公式計(jì)算可得;【詳解】解:設(shè)公比為,因?yàn)?,,所以,即,解得,所以;故選:D7、B【解析】根據(jù)等比數(shù)列的性質(zhì)可求.【詳解】因?yàn)闉榈缺葦?shù)列,設(shè)公比為,則,解得,又,所以.故選:B.8、D【解析】構(gòu)建空間直角坐標(biāo)系,根據(jù)已知條件求AN與BM對(duì)應(yīng)的方向向量,應(yīng)用空間向量夾角的坐標(biāo)表示求AN與BM所成角的余弦值.【詳解】建立如下圖所示的空間直角坐標(biāo)系,∴,,,,∴,,∴,所以AN與BM所成角的余弦值為.故選:D9、A【解析】根據(jù)已知不等式和要求解的不等式特征,構(gòu)造函數(shù),將問(wèn)題轉(zhuǎn)化為解不等式.通過(guò)已知條件研究g(x)的奇偶性和單調(diào)性即可解該不等式.【詳解】令,則根據(jù)題意可知,,∴g(x)是奇函數(shù),∵,∴當(dāng)時(shí),,單調(diào)遞減,∵g(x)是奇函數(shù),g(0)=0,∴g(x)在R上單調(diào)遞減,由不等式得,.故選:A.10、A【解析】根據(jù)復(fù)數(shù)的運(yùn)算化簡(jiǎn),由復(fù)數(shù)概念即可求解.【詳解】因?yàn)?,所以的虛部為,故選:A11、B【解析】根據(jù)等比數(shù)列相關(guān)計(jì)算得到,,進(jìn)而求出與,代入后得到,利用指數(shù)函數(shù)和二次函數(shù)單調(diào)性得到當(dāng)時(shí),取得最小值.【詳解】顯然,由題意得:,,兩式相除得:,將代入,解得:,所以,所以,,所以,其中單調(diào)遞增,所以當(dāng)時(shí),取得最小值.故選:B12、A【解析】由題意求得拋物線的準(zhǔn)線方程為,進(jìn)而得到準(zhǔn)線與雙曲線C的漸近線圍成的三角形面積,求得,再結(jié)合和離心率的定義,即可求解.【詳解】由題意,拋物線上一橫坐標(biāo)為5的點(diǎn)到焦點(diǎn)的距離為6,根據(jù)拋物線定義,可得,即,所以拋物線的準(zhǔn)線方程為,又由雙曲線C的兩條漸近線方程為,則拋物線的準(zhǔn)線與雙曲線C的兩條漸近線圍成的三角形面積為,解得,又由,可得,所以雙曲線C的離心率.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、52【解析】根據(jù)給定條件求出,再求出數(shù)列的通項(xiàng)即可計(jì)算作答.【詳解】依題意,因是等差數(shù)列,則其公差,于是得,,當(dāng)時(shí),,而滿足上式,因此,,所以.故答案為:5214、3【解析】利用拋物線的定義,再結(jié)合圖形即求.【詳解】由題可得拋物線的準(zhǔn)線為,設(shè)點(diǎn)在準(zhǔn)線上的射影為,則根據(jù)拋物線的定義可知,∴要求取得最小值,即求取得最小,當(dāng)三點(diǎn)共線時(shí)最小,為.故答案為:3.15、【解析】根據(jù)對(duì)稱性易知:當(dāng)樹(shù)苗放在第13或14個(gè)坑,26位同學(xué)領(lǐng)取樹(shù)苗往返所走的路程總和最小,再應(yīng)用等差數(shù)列前n項(xiàng)和的求法求26位同學(xué)領(lǐng)取樹(shù)苗往返所走的路程總和.【詳解】將26個(gè)同學(xué)對(duì)應(yīng)的26個(gè)坑分左右各13個(gè)坑,∴根據(jù)對(duì)稱性:樹(shù)苗放在左邊13個(gè)坑,與放在對(duì)稱右邊的13個(gè)坑,26個(gè)同學(xué)所走的總路程對(duì)應(yīng)相等,∴當(dāng)樹(shù)苗放在第13個(gè)坑,26位同學(xué)領(lǐng)取樹(shù)苗往返所走的路程總和最小,此時(shí),左邊13位同學(xué)所走的路程分別為,右邊13位同學(xué)所走的路程分別為,∴最小值為米.故答案為:.16、【解析】利用等差數(shù)列的通項(xiàng)公式求出首項(xiàng)和公差,然后求出其中某一項(xiàng).【詳解】解:由題意得從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣的日影子長(zhǎng)依次成等差數(shù)列,設(shè)其公差為,解得故立夏的日影子長(zhǎng)為尺.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)或.【解析】(1)求出線段中點(diǎn),進(jìn)而得到線段的垂直平分線為,與聯(lián)立得交點(diǎn),∴.則圓的方程可求(2)當(dāng)切線斜率不存在時(shí),可知切線方程為.當(dāng)切線斜率存在時(shí),設(shè)切線方程為,由到此直線的距離為,解得,即可到切線所在直線的方程.試題解析:(1)線段的中點(diǎn)為,∵,∴線段的垂直平分線為,與聯(lián)立得交點(diǎn),∴.∴圓的方程為.(2)當(dāng)切線斜率不存在時(shí),切線方程為.當(dāng)切線斜率存在時(shí),設(shè)切線方程為,即,則到此直線的距離為,解得,∴切線方程為.故滿足條件的切線方程為或.【點(diǎn)睛】本題考查圓的方程的求法,圓的切線,中點(diǎn)弦等問(wèn)題,解題的關(guān)鍵是利用圓的特性,利用點(diǎn)到直線的距離公式求解18、(1)證明見(jiàn)解析;(2)【解析】(1)利用題中所給的條件證明,,因?yàn)?,所以,,即可證明平面;(2)先證明平面,以為坐標(biāo)原點(diǎn),,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,求出平面的一個(gè)法向量,平面的一個(gè)法向量,利用向量的夾角公式即可求解【詳解】(1)在圖①中,連接,如圖所示:因?yàn)樗倪呅螢榱庑?,,所以是等邊三角?因?yàn)闉榈闹悬c(diǎn),所以,.又,所以.在圖②中,,所以,即.因?yàn)?,所以?又,,平面.所以平面.(2)由(1)知,,因?yàn)?,,平?所以平面.以為坐標(biāo)原點(diǎn),,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系:則,,,,.因?yàn)闉榈闹悬c(diǎn),所以.所以,.設(shè)平面的一個(gè)法向量為,由得.令,得,,所以.設(shè)平面的一個(gè)法向量為.因?yàn)?,由得令,,,得則,由圖象可知二面角為銳角,所以二面角的余弦值為.19、(1)或(2)或(3)且【解析】(1)根據(jù)直線一般式平行的條件列式計(jì)算;(2)根據(jù)直線一般式垂直的條件列式計(jì)算;(3)根據(jù)相交和平行的關(guān)系可得答案.【小問(wèn)1詳解】,,解得或又時(shí),直線,,兩直線不重合;時(shí),直線,,兩直線不重合;故或;【小問(wèn)2詳解】,,解得或;【小問(wèn)3詳解】與相交故由(1)得且.20、(1)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2).【解析】(1)求出,進(jìn)而判斷函數(shù)的單調(diào)性,然后討論符號(hào)后可得函數(shù)的單調(diào)區(qū)間;(2)令,則有兩個(gè)不同的零點(diǎn),利用導(dǎo)數(shù)討論的單調(diào)性并結(jié)合零點(diǎn)存在定理可得實(shí)數(shù)的取值范圍.【小問(wèn)1詳解】當(dāng)時(shí),,,記,則,所以在上單調(diào)遞增,又,所以當(dāng)時(shí),;當(dāng)時(shí),,所以單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問(wèn)2詳解】令,得,記,則,令得,列表得.x0↘極小值↗要使在上有兩個(gè)零點(diǎn),則,所以且函數(shù)在和上各有一個(gè)零點(diǎn)當(dāng)時(shí),,,,則,故上無(wú)零點(diǎn),與函數(shù)在上有一個(gè)零點(diǎn)矛盾,故不滿足條件所以,又因?yàn)?,所以考慮,設(shè),,則,則在上單調(diào)遞減,故當(dāng)時(shí),,所以,且,因?yàn)?,所以,由零點(diǎn)存在定理知在和上各有一個(gè)零點(diǎn)綜上可知,實(shí)數(shù)a的取值范圍為【點(diǎn)睛】方法點(diǎn)睛:利用導(dǎo)數(shù)研究零點(diǎn)問(wèn)題:(1)確定零點(diǎn)的個(gè)數(shù)問(wèn)題:可利用數(shù)形結(jié)合的辦法判斷交點(diǎn)個(gè)數(shù),如果函數(shù)較為復(fù)雜,可用導(dǎo)數(shù)知識(shí)確定極值點(diǎn)和單調(diào)區(qū)間從而確定其大致圖象;(2)方程的有解問(wèn)題就是判斷是否存在零點(diǎn)的問(wèn)題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問(wèn)題處理.可以通過(guò)構(gòu)造函數(shù)的方法,把問(wèn)題轉(zhuǎn)化為研究構(gòu)造的函數(shù)的零點(diǎn)問(wèn)題;(3)利用導(dǎo)數(shù)硏究函數(shù)零點(diǎn)或方程根,通常有三種思路:①利用最值或極值研究;②利用數(shù)形結(jié)合思想研究;③構(gòu)造輔助函數(shù)硏究.21、(1)(2)證明見(jiàn)解析【解析】(1)由橢圓定義可得到,再利用斜率公式及直線的斜率之積等于,列出方程,化簡(jiǎn)對(duì)比系數(shù)可得;(2)分直線l的斜率為0和不為0兩種情況討論,利用可得到T在定直線上,且該直線是的中垂線即可得到證明.【小問(wèn)1詳解】因?yàn)镃上的點(diǎn)M滿足,所以C表示焦點(diǎn)在x軸上的橢圓,且,即,,所以,設(shè),則,①所以直線的斜率,直線的斜率,由已知得,即,②由①②得,所以C的方程為【小問(wèn)2詳解】當(dāng)直線l的斜率為0時(shí),

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論