版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省中央民族大附屬中學(xué)芒市國際學(xué)校2025屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是減函數(shù),則函數(shù)在區(qū)間上的圖象可能是()A. B.C. D.2.已知三維數(shù)組,,且,則實數(shù)()A.-2 B.-9C. D.23.橢圓的長軸長是短軸長的2倍,則離心率()A. B.C. D.4.散點圖上有5組數(shù)據(jù):據(jù)收集到的數(shù)據(jù)可知,由最小二乘法求得回歸直線方程為,則的值為()A.54.2 B.87.64C.271 D.438.25.已知圓過點,,且圓心在軸上,則圓的方程是()A. B.C. D.6.設(shè),“命題”是“命題”的()A.充分且不必要條件 B.必要且不充分條件C.充要條件 D.既不充分也不必要條件7.為了了解1200名學(xué)生對學(xué)校某項教改實驗的意見,打算從中抽取一個容量為40的樣本,采用系統(tǒng)抽樣方法,則分段的間隔為()A.40 B.30C.20 D.128.在空間直角坐標(biāo)系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.9.已知平面上兩點,則下列向量是直線的方向向量是()A. B.C. D.10.已知直線:和直線:,拋物線上一動點P到直線和直線的距離之和的最小值是()A. B.C. D.11.若數(shù)列是等比數(shù)列,且,則()A.1 B.2C.4 D.812.圓與圓的位置關(guān)系是()A.內(nèi)含 B.相交C.外切 D.外離二、填空題:本題共4小題,每小題5分,共20分。13.如圖,E,F(xiàn)分別是三棱錐的棱AD,BC的中點,,,,則異面直線AB與EF所成的角為______.14.橢圓方程為橢圓內(nèi)有一點,以這一點為中點的弦所在的直線方程為,則橢圓的離心率為______15.已知圓的圓心與點關(guān)于直線對稱,直線與圓相交于、兩點,且,則圓的方程為_________16.若橢圓和圓(c為橢圓的半焦距)有四個不同的交點,則橢圓的離心率的取值范圍是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的焦距為,原點到經(jīng)過兩點的直線的距離為.(1)求橢圓的離心率;(2)如圖所示,是圓的一條直徑,若橢圓經(jīng)過兩點,求橢圓的標(biāo)準(zhǔn)方程18.(12分)在數(shù)列中,,是與的等差中項,(1)求證:數(shù)列是等差數(shù)列(2)令,求數(shù)列的前項的和19.(12分)已知數(shù)列的前n項和(1)求的通項公式;(2)若數(shù)列的前n項和,求數(shù)列的前n項和20.(12分)已知函數(shù),曲線在處的切線方程為.(Ⅰ)求實數(shù),的值;(Ⅱ)求在區(qū)間上的最值.21.(12分)已知正項等差數(shù)列滿足:,且,,成等比數(shù)列(1)求的通項公式;(2)設(shè)的前n項和為,且,求的前n項和22.(10分)已知是等差數(shù)列,其n前項和為,已知(1)求數(shù)列的通項公式:(2)設(shè),求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)導(dǎo)數(shù)概念和幾何意義判斷【詳解】由題意得,圖象上某點處的切線斜率隨增大而減小,滿足要求的只有A故選:A2、D【解析】由空間向量的數(shù)量積運算即可求解【詳解】∵,,,,,,且,∴,解得故選:D3、D【解析】根據(jù)長軸長是短軸長的2倍,得到,利用離心率公式即可求得答案.【詳解】∵,∴,故,故選:D4、C【解析】通過樣本中心點來求得正確答案.【詳解】,故,則,故.故選:C5、B【解析】根據(jù)圓心在軸上,設(shè)出圓的方程,把點,的坐標(biāo)代入圓的方程即可求出答案.【詳解】因為圓的圓心在軸上,所以設(shè)圓的方程為,因為點,在圓上,所以,解得,所以圓的方程是.故選:B.6、A【解析】根據(jù)充分、必要條件的概念理解,可得結(jié)果.【詳解】由,則或所以“”可推出“或”但“或”不能推出“”故命題是命題充分且不必要條件故選:A【點睛】本題主要考查充分、必要條件的概念理解,屬基礎(chǔ)題.7、B【解析】根據(jù)系統(tǒng)抽樣的概念,以及抽樣距的求法,可得結(jié)果.【詳解】由總數(shù)為1200,樣本容量為40,所以抽樣距為:故選:B【點睛】本題考查系統(tǒng)抽樣的概念,屬基礎(chǔ)題.8、A【解析】根據(jù)給定條件求出平面的法向量,再借助空間向量夾角公式即可計算作答.【詳解】設(shè)平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A9、D【解析】由空間向量的坐標(biāo)運算和空間向量平行的坐標(biāo)表示,以及直線的方向向量的定義可得選項.【詳解】解:因為兩點,則,又因為與向量平行,所以直線的方向向量是,故選:D.10、A【解析】根據(jù)已知條件,結(jié)合拋物線的定義,可得點P到直線和直線的距離之和,當(dāng)B,P,F(xiàn)三點共線時,最小,再結(jié)合點到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準(zhǔn)線為,焦點為,∴點P到準(zhǔn)線的距離PA等于點P到焦點F的距離PF,即,∴點P到直線和直線的距離之和,∴當(dāng)B,P,F(xiàn)三點共線時,最小,∵,∴,∴點P到直線和直線的距離之和的最小值為故選:A11、C【解析】根據(jù)等比數(shù)列的性質(zhì),由題中條件,求出,即可得出結(jié)果.【詳解】因為數(shù)列是等比數(shù)列,由,得,所以,因此.故選:C.12、C【解析】分別求出兩圓的圓心、半徑,再求出兩圓的圓心距即可判斷作答.【詳解】圓的圓心,半徑,圓,即的圓心,半徑,則,即有,所以圓與圓外切.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】取的中點,連結(jié),由分別為的中點,可得(或其補(bǔ)角)為異面直線AB與EF所成的角,在求解即可.【詳解】取的中點,連結(jié)由分別為的中點,則所以(或其補(bǔ)角)為異面直線AB與EF所成的角由分別是的中點,則,又在中,,則所以,又,所以在直角中,故答案為:14、【解析】設(shè),利用“點差法”得到,即可求出離心率.【詳解】設(shè)直線與橢圓交于,則.因為AB中點,則.又,相減得:.所以所以所以,所以,即離心率.故答案為:.15、【解析】利用對稱條件求出圓心C的坐標(biāo),借助直線被圓所截弦長求出圓半徑即可寫出圓的方程.【詳解】設(shè)圓的圓心,依題意,,解得,即圓心,點C到直線的距離,因圓截直線所得弦AB長為6,于是得圓C的半徑所以圓的方程為:.故答案為:16、【解析】當(dāng)圓的直徑介于橢圓長軸和短軸長度范圍之間時,橢圓和圓有四個不同的焦點,由此列不等式,解不等式求得橢圓離心率的取值范圍.【詳解】由于橢圓和圓有四個焦點,故圓的直徑介于橢圓長軸和短軸長度范圍之間,即.由得,兩邊平方并化簡得,即①.由得,兩邊平方并化簡得,解得②.由①②得.故填.【點睛】本小題主要考查橢圓和圓的位置關(guān)系,考查橢圓離心率取值范圍的求法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意得,進(jìn)而求解離心率即可;(2)根據(jù)題意得圓心是線段的中點,且,易知斜率存在,設(shè)其直線方程為,再結(jié)合韋達(dá)定理及弦長公式求解即可.【小問1詳解】解:過點的直線方程為,∴原點到直線的距離,由,得,解得離心率.【小問2詳解】解:由(1)知,橢圓的方程為.依題意,圓心是線段的中點,且.易知,不與軸垂直,設(shè)其直線方程,聯(lián)立,得.設(shè),則,.由,得,解得.所以.于是.由,得,解得.故橢圓的方程為.18、(1)證明見解析;(2).【解析】(1)求得,利用等差數(shù)列的定義可證得結(jié)論成立;(2)求出,可計算得出,利用并項求和法可求得數(shù)列的前項的和.小問1詳解】解:由題意知是與的等差中項,可得,可得,則,可得,所以,,又由,可得,所以數(shù)列是首項和公差均為的等差數(shù)列.【小問2詳解】解:由(1)可得:,,對任意的,,因此,.19、(1),;(2),.【解析】(1)根據(jù)的關(guān)系可得,根據(jù)等比數(shù)列的定義寫出的通項公式,進(jìn)而可得的通項公式;(2)利用的關(guān)系求的通項公式,結(jié)合(1)結(jié)論可得,再應(yīng)用分組求和、錯位相消法求的前n項和【小問1詳解】.①當(dāng)時,,可得當(dāng)時,.②①-②得,則,而a1-1=1不為零,故是首項為1,公比為2的等比數(shù)列,則∴數(shù)列的通項公式為,【小問2詳解】∵,∴當(dāng)時,,當(dāng)時,,又也適合上式,∴,∴,令,,則,又,∴20、(Ⅰ)最大值為,最小值為.(Ⅱ)最大值為,最小值為.【解析】(Ⅰ)切點在函數(shù)上,也在切線方程為上,得到一個式子,切線的斜率等于曲線在的導(dǎo)數(shù),得到另外一個式子,聯(lián)立可求實數(shù),的值;(Ⅱ)函數(shù)在閉區(qū)間的最值在極值點或者端點處取得,通過比較大小可得最大值和最小值.【詳解】解:(Ⅰ),∵曲線在處的切線方程為,∴解得,.(Ⅱ)由(Ⅰ)知,,則,令,解得,∴在上單調(diào)遞減,在上單調(diào)遞增,又,,,∴在區(qū)間上的最大值為,最小值為.【點睛】本題主要考查導(dǎo)函數(shù)與切線方程的關(guān)系以及利用導(dǎo)函數(shù)求最值的問題.21、(1);(2).【解析】(1)利用等差數(shù)列的通項公式結(jié)合條件即求;(2)利用條件可得,然后利用錯位相減法即求.【小問1詳解】設(shè)等差數(shù)列公差為d,由得,即,化簡得,又,,成等比數(shù)列,則,即,將代入上式得,化簡得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 翻譯服務(wù)合同
- 黃牛買賣合同
- 債權(quán)附負(fù)擔(dān)贈與契約合同
- 2025-2030全球特殊冠狀動脈球囊導(dǎo)管行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球800G交換機(jī)行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國縫紉量規(guī)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球石油鉆井級瓜爾豆膠粉行業(yè)調(diào)研及趨勢分析報告
- 2025版?zhèn)€人股權(quán)回購協(xié)議書(資產(chǎn)剝離專項)3篇
- 23年-24年項目部安全管理人員安全培訓(xùn)考試題參考答案
- 2023年-2024年項目部安全管理人員安全培訓(xùn)考試題附參考答案(研優(yōu)卷)
- 介入科圍手術(shù)期護(hù)理
- 體檢科運營可行性報告
- 青光眼術(shù)后護(hù)理課件
- 設(shè)立工程公司組建方案
- 設(shè)立項目管理公司組建方案
- 《物理因子治療技術(shù)》期末考試復(fù)習(xí)題庫(含答案)
- 退款協(xié)議書范本(通用版)docx
- 薪酬戰(zhàn)略與實踐
- 焊錫膏技術(shù)培訓(xùn)教材
- 江蘇省泰州市姜堰區(qū)2023年七年級下學(xué)期數(shù)學(xué)期末復(fù)習(xí)試卷【含答案】
- 答案之書(解答之書)-電子版精選答案
評論
0/150
提交評論