版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市十二中2025屆數(shù)學高二上期末學業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線上的一點到其焦點的距離等于()A. B.C. D.2.已知圓:,點,則點到圓上點的最小距離為()A.1 B.2C. D.3.在圓上任取一點P,過點P作x軸的垂線段PD,D為垂足,當點P在圓上運動時,線段PD的中點M的軌跡記為C,則曲線C的離心率為()A. B.C. D.4.“﹣3<m<4”是“方程表示橢圓”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要5.已知圓O的半徑為5,,過點P的2021條弦的長度組成一個等差數(shù)列,最短弦長為,最長弦長為,則其公差為()A. B.C. D.6.閱讀如圖所示程序框圖,運行相應的程序,輸出的S的值等于()A.2 B.6C.14 D.307.過點且垂直于直線的直線方程為()A. B.C. D.8.曲線的一個焦點F到兩條漸近線的垂線段分別為FA,F(xiàn)B,O為坐標原點,若四邊形OAFB是菱形,則雙曲線C的離心率等于()A. B.C.2 D.9.已知函數(shù),,若對任意的,,都有成立,則實數(shù)的取值范圍是()A. B.C. D.10.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.11.拋物線的焦點到其準線的距離是()A.4 B.3C.2 D.112.設集合或,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知離心率為的橢圓:和離心率為的雙曲線:有公共的焦點,其中為左焦點,P是與在第一象限的公共點.線段的垂直平分線經過坐標原點,則的最小值為_____________.14.若球的大圓的面積為,則該球的表面積為___________.15.已知拋物線C:y2=2px(p>0)上的點P(1,y0)(y0>0)到焦點的距離為2,則p=__16.已知直線與直線平行,則實數(shù)m的值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在四面體ABCD中,CB=CD,,且E,F(xiàn)分別是AB,BD的中點,求證:(I)直線;(II).18.(12分)已知圓O:與圓C:(1)在①,②這兩個條件中任選一個,填在下面的橫線上,并解答若______,判斷這兩個圓的位置關系;(2)若,求直線被圓C截得的弦長注:若第(1)問選擇兩個條件分別作答,按第一個作答計分19.(12分)一個完美均勻且靈活的平衡鏈被它的兩端懸掛,且只受重力的影響,這個鏈子形成的曲線形狀被稱為懸鏈線(如圖所示).選擇適當?shù)淖鴺讼岛螅瑧益溇€對應的函數(shù)近似是一個雙曲余弦函數(shù),其解析式可以為,其中,是常數(shù).(1)當時,判斷并證明的奇偶性;(2)當時,若最小值為,求的最小值.20.(12分)已知拋物線:的焦點為,直線與拋物線在第一象限的交點為,且(1)求拋物線的方程;(2)經過焦點作互相垂直的兩條直線,,與拋物線相交于,兩點,與拋物線相交于,兩點.若,分別是線段,的中點,求的最小值21.(12分)已知函數(shù),.(1)當時,求曲線在點處的切線方程;(2)若在區(qū)間上有唯一的零點.(?。┣蟮娜≈捣秶?;(ⅱ)證明:.22.(10分)已知圓:,直線:.圓與圓關于直線對稱(1)求圓的方程;(2)點是圓上的動點,過點作圓的切線,切點分別為、.求四邊形面積的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由點的坐標求得參數(shù),再由焦半徑公式得結論【詳解】由題意,解得,所以,故選:C2、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結合圓外一點到圓上點的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點到圓上點的最小距離為.故選:C.3、B【解析】設,,則由題意可得,代入圓方程中化簡可得曲線C的方程,從而可求出離心率【詳解】設,,則,得,所以,因為點在圓上,所以,即,所以點的軌跡方程為,所以,則所以離心率為,故選:B4、B【解析】求出方程表示橢圓的充要條件是且,由此可得答案.【詳解】因為方程表示橢圓的充要條件是,解得且,所以“﹣3<m<4”是“方程表示橢圓”的必要不充分條件.故選:B【點睛】本題考查了由方程表示橢圓求參數(shù)的范圍,考查了充要條件和必要不充分條件,本題易錯點警示:漏掉,本題屬于基礎題.5、B【解析】可得過點P的最長弦長為直徑,最短弦長為過點P的與垂直的弦,分別求出即可得出公差.【詳解】可得過點P的最長弦長為直徑,,最短弦長為過點P的與垂直的弦,,公差.故選:B.6、C【解析】模擬運行程序,直到得出輸出的S的值.【詳解】運行程序框圖,,,;,,;,,;,輸出.故選:C7、A【詳解】因為所求直線垂直于直線,又直線的斜率為,所以所求直線的斜率,所以直線方程為,即.故選:A【點睛】本題主要考查直線方程的求法,屬基礎題.8、A【解析】依題意可得為正方形,即可得到,從而得到雙曲線的漸近線為,即可求出雙曲線的離心率;【詳解】解:依題意,,且四邊形為菱形,所以為正方形,所以,即雙曲線的漸近線為,即,所以;故選:A9、B【解析】根據(jù)題意,將問題轉化為對任意的,,利用導數(shù)求得的最大值,再分離參數(shù),構造函數(shù),利用導數(shù)求其最大值,即可求得參數(shù)的取值范圍.【詳解】由題可知:對任意的,,都有恒成立,故可得對任意的,;又,則,故在單調遞減,在單調遞增,又,,則當時,,.對任意的,,即,恒成立.也即,不妨令,則,故在單調遞增,在單調遞減.故,則只需.故選:B.10、A【解析】利用三角形正弦定理結合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A11、C【解析】由拋物線焦點到準線的距離為求解即可.【詳解】因為拋物線焦點到準線的距離為,故拋物線的焦點到其準線的距離是2.故選:C【點睛】本題主要考查了拋物線的標準方程中的幾何意義,屬于基礎題型.12、B【解析】根據(jù)交集的概念和運算直接得出結果.【詳解】由題意知,.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##4.5【解析】設為右焦點,半焦距為,,由題意,,則,所以,從而有,最后利用均值不等式即可求解.【詳解】解:設為右焦點,半焦距為,,由題意,,則,所以,即,故,當且僅當時取等,所以,故答案為:.14、【解析】設球的半徑為,則球的大圓的半徑為,根據(jù)圓的面積公式列方程求出,再由球的表面積公式即可求解.【詳解】設球的半徑為,則球的大圓的半徑為,所以球的大圓的面積為,可得,所以該球的表面積為.故答案為:.15、2【解析】根據(jù)已知條件,結合拋物線的定義,即可求解【詳解】解:∵拋物線C:y2=2px(p>0)上的點P(1,y0)(y0>0)到焦點的距離為2,∴由拋物線的定義可得,,解得p=2故答案為:216、【解析】由兩直線平行的判定可得求解即可,注意驗證是否出現(xiàn)直線重合的情況.【詳解】由題設,,解得,經檢驗滿足題設.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(I)證明見解析(II)證明見解析【解析】證明:(I)E,F(xiàn)分別為AB,BD的中點(II),又,所以18、(1)選①:外離;選②:相切;(2)【解析】(1)不論選①還是選②,都要首先算出兩圓的圓心距,然后和兩圓的半徑之和或差進行比較即可;(2)根據(jù)點到直線的距離公式,先計算圓心到直線的距離,然后利用圓心距、半徑、弦長的一半之間的關系求解.【小問1詳解】選①圓O的圓心為,半徑為l;圓C的圓心為,半徑為因為兩圓的圓心距為,且兩圓的半徑之和為,所以兩圓外離選②圓O的圓心為,半徑為1.圓C的圓心為,半徑為2因為兩圓的圓心距為.且兩圓的半徑之和為,所以兩圓外切【小問2詳解】因為點C到直線的距離,所以直線被圓C截得的弦長為19、(1)偶函數(shù)(2)10【解析】(1)根據(jù)偶函數(shù)定義直接判斷可知;(2)由基本不等式求得的最小值,得到a、b的關系,然后代入目標式,分離常數(shù),然后可得.【小問1詳解】當時,,定義域為R,因為所以為偶函數(shù).【小問2詳解】因為,所以,當且僅當,即時,取等號.由題知,即,因為,所以,即所以令,,則,所以,所以,當,即時,取等號.所以的最小值為10.20、(1);(2)8.【解析】(1)寫出拋物線E的準線,利用拋物線定義求出p即可作答.(2)由(1)求出焦點坐標,設出直線的方程,并與拋物線E的方程聯(lián)立,由此求出C點坐標,同理可得D點坐標,列式計算作答.小問1詳解】拋物線:的準線方程為:,由拋物線定義得:,解得,所以拋物線的方程為:.【小問2詳解】由(1)知,點,顯然直線,的斜率都存在且不為0,設直線斜率為,則的斜率為,直線的方程為:,由消去y并整理得,設,則,于得線段PQ中點,同理得,則,當且僅當,即時取“=”,所以的最小值是8.【點睛】結論點睛:拋物線方程中,字母p的幾何意義是拋物線的焦點F到準線的距離,等于焦點到拋物線頂點的距離21、(1);(2)(ⅰ);(ⅱ)證明見解析.【解析】(1)求出,,利用導數(shù)的幾何意義即可求得切線方程;(2)(?。└鶕?jù)題意對參數(shù)分類討論,當時,等價轉化,且構造函數(shù),利用零點存在定理,即可求得參數(shù)的取值范圍;(ⅱ)根據(jù)(?。┲兴蟮玫脚c的等量關系,求得并構造函數(shù),利用導數(shù)研究其單調性和最值,則問題得證.【小問1詳解】當時,,則,故,,則曲線在點處的切線方程為.【小問2詳解】(ⅰ)因為,故可得,因為,則當時,,則,無零點,不滿足題意;當時,若在有一個零點,即在有一個零點,也即在有一個零點,又,則單調遞增,則只需,解得.綜上所述,若在區(qū)間上有唯一的零點,則;(ⅱ)由(?。┛芍?,若在區(qū)間上有唯一的零點,則,也即,則,令,則,又在都是單調增函數(shù),故是單調增函數(shù),又,故,則在單調遞增,則,故,即證.【點睛】本題考查導數(shù)的幾何意義,利用導數(shù)研究函數(shù)的零點以及最值;處理問題的關鍵是合理轉化函數(shù)零點問題,以及充分利用零點存在定理,熟練掌握構造函數(shù)法,屬綜合困難題.22、(1)(2)【解析】(1)圓關于直線對稱,半徑不變,只需求出圓心對稱的坐標即可.(2)將四邊形面積分成兩個全等的直角三角形,利用直角三角形的性質,一條直角邊不變時,斜邊與另外一條直角邊的大小成正相關,從而得到面積的最小值與最大值.【小問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陜西省興平市秦嶺中學2025屆高三英語第一學期期末考試試題含解析
- 2025屆上饒市重點中學語文高三上期末監(jiān)測試題含解析
- 2025屆河北省雄安新區(qū)博奧高級中學語文高三第一學期期末復習檢測模擬試題含解析
- 2025屆河北省唐山市遵化一中生物高三第一學期期末教學質量檢測試題含解析
- 湖北省重點高中2025屆英語高三第一學期期末預測試題含解析
- 2025屆巴中市重點中學高一上數(shù)學期末考試試題含解析
- 甘肅省白銀市靖遠縣第一中學2025屆生物高一第一學期期末復習檢測試題含解析
- 2025屆浙江省杭州市杭州四中高一上數(shù)學期末考試試題含解析
- 2025屆山東省濟南市平陰縣第一中學數(shù)學高一上期末考試試題含解析
- 內蒙古包鋼一中2025屆高三語文第一學期期末綜合測試試題含解析
- 學生輟學勸返記錄表
- 學校秋季腹瀉知識講座
- 設立招投標代理公司可行性研究報告
- 小學一年級禁毒教育
- PCBA工藝管制制程稽查表
- 小學書法大賽評價準則與打分表
- 《朱蘭質量手冊》課件
- 幼兒保育學前教育專業(yè)教師教學創(chuàng)新團隊建設方案
- 2023年全球瘧疾報告
- 15D500-15D505 防雷與接地圖集(合訂本)
- 江蘇省徐州市2023-2024學年部編版八年級上學期期中歷史試題
評論
0/150
提交評論