版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省南昌外國(guó)語學(xué)校2025屆數(shù)學(xué)高二上期末統(tǒng)考模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某研究所為了研究近幾年中國(guó)留學(xué)生回國(guó)人數(shù)的情況,對(duì)2014至2018年留學(xué)生回國(guó)人數(shù)進(jìn)行了統(tǒng)計(jì),數(shù)據(jù)如下表:年份20142015201620172018年份代碼12345留學(xué)生回國(guó)人數(shù)/萬36.540.943.348.151.9根據(jù)上述統(tǒng)計(jì)數(shù)據(jù)求得留學(xué)生回國(guó)人數(shù)(單位:萬)與年份代碼滿足的線性回歸方程為,利用回歸方程預(yù)測(cè)年留學(xué)生回國(guó)人數(shù)為()A.63.14萬 B.64.72萬C.66.81萬 D.66.94萬2.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.53.圓心在直線上,且過點(diǎn),并與直線相切的圓的方程為()A. B.C. D.4.橢圓的焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓上,若|PF1|=4,則∠F1PF2的余弦值為A. B.C. D.5.已知拋物線上的點(diǎn)到該拋物線焦點(diǎn)的距離為,則拋物線的方程是()A. B.C. D.6.在各項(xiàng)均為正數(shù)等比數(shù)列中,若成等差數(shù)列,則=()A. B.C. D.7.過點(diǎn)(-2,1)的直線中,被圓x2+y2-2x+4y=0截得的弦最長(zhǎng)的直線的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=08.拋物線的焦點(diǎn)到其準(zhǔn)線的距離是()A.4 B.3C.2 D.19.設(shè)的內(nèi)角的對(duì)邊分別為的面積,則()A. B.C. D.10.命題“若,則”為真命題,那么不可能是()A. B.C. D.11.已知圓和橢圓.直線與圓交于、兩點(diǎn),與橢圓交于、兩點(diǎn).若時(shí),的取值范圍是,則橢圓的離心率為()A. B.C. D.12.下列雙曲線中,漸近線方程為的是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.瑞士著名數(shù)學(xué)家歐拉在1765年證明了定理:三角形的外心、重心、垂心位于同一條直線上,這條直線被后人稱為三角形的“歐拉線”.已知平面直角坐標(biāo)系中各頂點(diǎn)的坐標(biāo)分別為,,,則其“歐拉線”的方程為___________.14.已知,,,若,則______.15.已知拋物線方程為,則其焦點(diǎn)坐標(biāo)為__________16.分別過橢圓的左、右焦點(diǎn)、作兩條互相垂直的直線、,它們的交點(diǎn)在橢圓的內(nèi)部,則橢圓的離心率的取值范圍是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)f(x)+alnx,實(shí)數(shù)a>0(1)當(dāng)a=2時(shí),求函數(shù)f(x)在x=1處的切線方程;(2)討論函數(shù)f(x)在區(qū)間(0,10)上的單調(diào)性和極值情況;(3)若存在x∈(0,+∞),使得關(guān)于x的不等式f(x)<2+a2x成立,求實(shí)數(shù)a的取值范圍18.(12分)已知拋物線上的點(diǎn)到焦點(diǎn)的距離為6(1)求拋物線的方程;(2)設(shè)為拋物線的焦點(diǎn),直線與拋物線交于,兩點(diǎn),求的面積19.(12分)設(shè)數(shù)列是公比為正整數(shù)的等比數(shù)列,滿足,,設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(3)已知數(shù)列,設(shè),求數(shù)列的前項(xiàng)和.20.(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為,(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)已知,曲線與曲線相交于A,B兩點(diǎn),求.21.(12分)已知橢圓:的離心率為,,分別為橢圓的左,右焦點(diǎn),為橢圓上一點(diǎn),的周長(zhǎng)為.(1)求橢圓的方程;(2)為圓上任意一點(diǎn),過作橢圓的兩條切線,切點(diǎn)分別為A,B,判斷是否為定值?若是,求出定值:若不是,說明理由,22.(10分)已知函數(shù),為的導(dǎo)函數(shù)(1)求的定義域和導(dǎo)函數(shù);(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(3)若對(duì),都有成立,且存在,使成立,求實(shí)數(shù)a的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先求出樣本點(diǎn)的中心,代入線性回歸方程即可求出,再將代入線性回歸方程即可得到結(jié)果【詳解】由題意知:,,所以樣本點(diǎn)的中心為,所以,解得:,可得線性回歸方程為,年對(duì)應(yīng)的年份代碼為,令,則,所以預(yù)測(cè)2022年留學(xué)生回國(guó)人數(shù)為66.94萬,故選:D.2、C【解析】作出不等式組對(duì)應(yīng)的可行域,再利用數(shù)形結(jié)合分析求解.【詳解】解:作出不等式組對(duì)應(yīng)的可行域?yàn)槿鐖D所示的陰影部分區(qū)域,由得,它表示斜率為縱截距為的直線系,當(dāng)直線平移到點(diǎn)時(shí),縱截距最大,最大.聯(lián)立直線方程得得.所以.故選:C3、A【解析】設(shè)圓的圓心,表示出半徑,再由圓心到切線距離等于半徑即可列出方程求得參數(shù)及圓的方程.【詳解】∵圓的圓心在直線上,∴設(shè)圓心為(a,-a),∵圓過,∴半徑r=,又∵圓與相切,∴半徑r=,則,解得a=2,故圓心為(2,-2),半徑為,故方程為.故選:A.4、B【解析】根據(jù)題意,橢圓的標(biāo)準(zhǔn)方程為,其中則,則有|F1F2|=2,若a=3,則|PF1|+|PF2|=2a=6,又由|PF1|=4,則|PF2|=6-|PF1|=2,則cos∠F1PF2==.故選B5、B【解析】由拋物線知識(shí)得出準(zhǔn)線方程,再由點(diǎn)到焦點(diǎn)的距離等于其到準(zhǔn)線的距離求出,從而得出方程.【詳解】由題意知,則準(zhǔn)線為,點(diǎn)到焦點(diǎn)的距離等于其到準(zhǔn)線的距離,即,∴,則故選:B.6、A【解析】利用等差中項(xiàng)的定義以及等比數(shù)列的通項(xiàng)公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,∵成等差數(shù)列,∴,即,解得或(舍去),∴,故選:.7、A【解析】當(dāng)直線被圓截得的最弦長(zhǎng)最大時(shí),直線要經(jīng)過圓心,即圓心在直線上,然后根據(jù)兩點(diǎn)式方程可得所求【詳解】由題意得,圓的方程為,∴圓心坐標(biāo)為∵直線被圓截得的弦長(zhǎng)最大,∴直線過圓心,又直線過點(diǎn)(-2,1),所以所求直線的方程為,即故選:A8、C【解析】由拋物線焦點(diǎn)到準(zhǔn)線的距離為求解即可.【詳解】因?yàn)閽佄锞€焦點(diǎn)到準(zhǔn)線的距離為,故拋物線的焦點(diǎn)到其準(zhǔn)線的距離是2.故選:C【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程中的幾何意義,屬于基礎(chǔ)題型.9、A【解析】利用三角形面積公式、二倍角正弦公式有,再由三角形內(nèi)角的性質(zhì)及余弦定理化簡(jiǎn)求即可.【詳解】由,∴,在中,,∴,解得.故選:A.10、D【解析】根據(jù)命題真假的判斷,對(duì)四個(gè)選項(xiàng)一一驗(yàn)證即可.【詳解】對(duì)于A:若,則必成立;對(duì)于B:若,則必成立;對(duì)于C:若,則必成立;對(duì)于D:由不能得出,所以不可能是.故選:D11、C【解析】由題設(shè),根據(jù)圓與橢圓的對(duì)稱性,假設(shè)在第一象限可得,結(jié)合已知有,進(jìn)而求橢圓的離心率.【詳解】由題設(shè),圓與橢圓的如下圖示:又時(shí),的取值范圍是,結(jié)合圓與橢圓的對(duì)稱性,不妨假設(shè)在第一象限,∴從0逐漸增大至無窮大時(shí),,故,∴故選:C.12、A【解析】由雙曲線的漸進(jìn)線的公式可行選項(xiàng)A的漸進(jìn)線方程為,故選A.考點(diǎn):本題主要考查雙曲線的漸近線公式.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意知是直角三角形,即可寫出垂心、外心的坐標(biāo),進(jìn)而可得“歐拉線”的方程.【詳解】由題設(shè)知:是直角三角形,則垂心為直角頂點(diǎn),外心為斜邊的中點(diǎn),∴“歐拉線”的方程為.故答案為:.14、【解析】根據(jù)題意,由向量坐標(biāo)表示,列出方程,求出,,即可得出結(jié)果.【詳解】因?yàn)?,,,若,則,解得,所以.故答案為:.【點(diǎn)睛】本題主要考查由向量坐標(biāo)表示求參數(shù),屬于基礎(chǔ)題型.15、【解析】先將拋物線的方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程的形式,即可判斷拋物線的焦點(diǎn)坐標(biāo)為,從而解得答案.【詳解】解:因?yàn)閽佄锞€方程為,即,所以,,所以拋物線的焦點(diǎn)坐標(biāo)為,故答案為:.16、【解析】根據(jù)條件可知以為直徑的圓在橢圓的內(nèi)部,可得,再根據(jù),即可求得離心率的取值范圍.【詳解】根據(jù)條件可知,以為直徑的圓與橢圓沒有交點(diǎn),即,即,,即.故填:.【點(diǎn)睛】本題考查橢圓離心率的取值范圍,求橢圓離心率是常考題型,涉及的方法包含1.根據(jù)直接求,2.根據(jù)條件建立關(guān)于的齊次方程求解,3.根據(jù)幾何關(guān)系找到的等量關(guān)系求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)4x﹣y+2=0(2)答案見解析(3)(0,2)∪(2,+∞)【解析】(1)求出f(x)的導(dǎo)數(shù),可得切線的斜率和切點(diǎn)坐標(biāo),由直線的點(diǎn)斜式方程可得所求切線的方程;(2)求得f(x)的導(dǎo)數(shù),分a、0<a兩種情況討論求出答案即可;(3)由題意可得存在x∈(0,+∞),使得不等式成立,令,x>0,求得其最小值,再把最小值看成關(guān)于的函數(shù),結(jié)合其單調(diào)性和極值可得答案【小問1詳解】函數(shù)f(x)的定義域?yàn)椋?,+∞),當(dāng)a=2時(shí),,導(dǎo)數(shù)為4,可得f(x)在x=1處的切線的斜率為4,又f(1)=6,所以f(x)在x=1處的切線的方程為y﹣6=4(x﹣1),即4x﹣y+2=0;【小問2詳解】f(x)的導(dǎo)數(shù)為f′(x)a2,x>0,令f′(x)=0,可得x(舍去),①當(dāng)010,即a時(shí),當(dāng)0<x時(shí),f′(x)<0,f(x)遞減;當(dāng)x<10時(shí),f′(x)>0,f(x)遞增所以f(x)在(0,)上遞減,在(,10)上遞增,f(x)在x處取得極小值,無極大值;②當(dāng)10即0<a時(shí),f′(x)<0,f(x)在(0,10)上遞減,無極值綜上可得,當(dāng)a時(shí),f(x)在(0,)單調(diào)遞減,在(,10)上單調(diào)遞增,f(x)在x時(shí)取得極小值,無極大值當(dāng)0<a時(shí),f(x)在區(qū)間(0,10)上遞減,無極值;【小問3詳解】存在x∈(0,+∞),使得不等式f(x)<2+a2x成立等價(jià)為存在x∈(0,+∞),使得不等式alnx﹣2<0成立令,x>0,g′(x),因?yàn)閍>0,可得當(dāng)0<x時(shí),g′(x)<0,g(x)遞減;當(dāng)x時(shí),g′(x)>0,g(x)遞增,所以當(dāng)x時(shí),g(x)取得極小值,且為最小值,由題意可得,令,,令h′(x)=0,可得x=2,當(dāng)x∈(0,2)時(shí),h′(x)>0,h(x)遞增;當(dāng)x∈(2,+∞)時(shí),h′(x)<0,h(x)遞減所以當(dāng)x=2時(shí),h(x)取得極大值,且為最大值h(2)=0所以滿足的實(shí)數(shù)a的取值范圍是(0,2)∪(2,+∞)18、(1)(2)【解析】(1)根據(jù)焦半徑公式可求,從而可求拋物線的方程.(2)求出的長(zhǎng)度后可求的面積.【小問1詳解】因?yàn)椋裕蕭佄锞€方程為:.【小問2詳解】設(shè),且,由可得,故或,故,故,故,而到直線的距離為,故的面積為19、(1)(2)證明見解析,(3)【解析】(1)根據(jù)等比數(shù)列列出方程組求解首項(xiàng)、公比即可得解;(2)化簡(jiǎn)后得,可證明數(shù)列是等差數(shù)列,即可得出,再求出即可;(3)利用錯(cuò)位相減法求出數(shù)列的和.【小問1詳解】設(shè)公比為,由條件可知,,所以;【小問2詳解】,又,所以,所以數(shù)列是以為首項(xiàng),為公差等差數(shù)列,所以,所以.【小問3詳解】,,兩式相減可得,,.20、(1),(2)2【解析】(1)消參數(shù)即可得曲線的普通方程,利用極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)化關(guān)系式,從而曲線的直角坐標(biāo)方程;(2)將的參數(shù)方程代入的直角坐標(biāo)方程,得關(guān)于的一元二次方程,由韋達(dá)定理得,即可得的值.【小問1詳解】由,消去參數(shù),得,即,所以曲線的普通方程為.由,得,即,所以曲線的直角坐標(biāo)方程為【小問2詳解】將代入,整理得,則,令方程的兩個(gè)根為由韋達(dá)定理得,所以.21、(1)(2)是;【解析】(1)由離心率和焦點(diǎn)三角形周長(zhǎng)可求出,結(jié)合關(guān)系式得出,即可得出橢圓的方程;(2)由平行于軸特殊情況求出,即;當(dāng)平行于軸時(shí),設(shè)過的直線為,聯(lián)立橢圓方程,令化簡(jiǎn)得關(guān)于的二次方程,由韋達(dá)定理即可求解.【小問1詳解】由題可知,,解得,又,解得,故橢圓的標(biāo)準(zhǔn)方程為:;【小問2詳解】如圖所示,當(dāng)平行于軸時(shí),恰好平行于軸,,,;當(dāng)不平行于軸時(shí),設(shè),設(shè)過點(diǎn)的直線為,聯(lián)立得,令得,化簡(jiǎn)得,設(shè),則,又,故,即.綜上所述,.22、(1),(2)在單減,也單減,無增區(qū)間(3)【解析】(1)根據(jù)分母不等于0,對(duì)數(shù)的真數(shù)大于零即可求得函數(shù)的定義域,根據(jù)基本初等函數(shù)的求導(dǎo)公式及商的導(dǎo)數(shù)公式即可求出函數(shù)的導(dǎo)函數(shù);(2)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)函數(shù)的符號(hào)即可得出答案;(3)若對(duì),都有成立,即,即,令,,只要即可,利用導(dǎo)數(shù)求出函數(shù)的最小值即可求出的范圍,,,求出函數(shù)的值域,根據(jù)存在,使成立,則0在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)選擇講座模板
- 2025年度茶葉產(chǎn)品溯源體系建設(shè)合同范本4篇
- 2025年度場(chǎng)化項(xiàng)目服務(wù)類采購項(xiàng)目合同附件定制版4篇
- 2025年度電競(jìng)主題商鋪?zhàn)赓U合作協(xié)議4篇
- 2025年度生態(tài)環(huán)保園區(qū)場(chǎng)地委托出租與環(huán)保技術(shù)服務(wù)合同樣本4篇
- 專業(yè)技能提升課程2024培訓(xùn)協(xié)議
- 人教版九年級(jí)化學(xué)上冊(cè)第1章開啟化學(xué)之門《第2節(jié) 化學(xué)研究什么》公開示范課教學(xué)課件
- 二零二四事業(yè)單位聘用合同四種類別適用范圍與條件3篇
- 2025年度文化演藝中心場(chǎng)地租用協(xié)議范本4篇
- 2025年度城市綜合體項(xiàng)目場(chǎng)地購置合同示范文本4篇
- 瀝青路面施工安全培訓(xùn)
- 機(jī)電設(shè)備安裝施工及驗(yàn)收規(guī)范
- 倉庫安全培訓(xùn)考試題及答案
- 中國(guó)大百科全書(第二版全32冊(cè))08
- 初中古詩文言文背誦內(nèi)容
- 天然氣分子篩脫水裝置吸附計(jì)算書
- 檔案管理項(xiàng)目 投標(biāo)方案(技術(shù)方案)
- 蘇教版六年級(jí)上冊(cè)100道口算題(全冊(cè)完整版)
- 2024年大學(xué)試題(宗教學(xué))-佛教文化筆試考試歷年典型考題及考點(diǎn)含含答案
- 計(jì)算機(jī)輔助設(shè)計(jì)智慧樹知到期末考試答案章節(jié)答案2024年青島城市學(xué)院
- 知識(shí)庫管理規(guī)范大全
評(píng)論
0/150
提交評(píng)論