版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省定遠育才學校高二上數(shù)學期末達標檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,已知,分別是橢圓的左、右焦點,現(xiàn)以為圓心作一個圓恰好經(jīng)過橢圓的中心并且交橢圓于點,.若過點的直線是圓的切線,則橢圓的離心率為()A. B.C. D.2.德國數(shù)學家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進微積分概念.在研究切線時認識到,求曲線的切線的斜率依賴于縱坐標的差值和橫坐標的差值,以及當此差值變成無限小時它們的比值,這也正是導數(shù)的幾何意義.設是函數(shù)的導函數(shù),若,且對,,且總有,則下列選項正確的是()A. B.C. D.3.關于x的方程在內有解,則實數(shù)m的取值范圍()A. B.C. D.4.設AB是橢圓()的長軸,若把AB一百等分,過每個分點作AB的垂線,交橢圓的上半部分于P1、P2、…、P99,F(xiàn)1為橢圓的左焦點,則的值是()A. B.C. D.5.已知數(shù)列,,則下列說法正確的是()A.此數(shù)列沒有最大項 B.此數(shù)列的最大項是C.此數(shù)列沒有最小項 D.此數(shù)列的最小項是6.已知正方形的四個頂點都在橢圓上,若的焦點F在正方形的外面,則的離心率的取值范圍是()A. B.C. D.7.閱讀如圖所示的程序框圖,運行相應的程序,輸出S的結果是()A.128 B.64C.16 D.328.如圖,某綠色蔬菜種植基地在A處,要把此處生產(chǎn)的蔬菜沿道路或運送到形狀為四邊形區(qū)域的農貿市場中去,現(xiàn)要求在農貿市場中確定一條界線,使位于界線一側的點沿道路運送蔬菜較近,而另一側的點沿道路運送蔬菜較近,則該界線所在曲線為()A.圓 B.橢圓C.雙曲線 D.拋物線9.橢圓()的右頂點是拋物線的焦點,且短軸長為2,則該橢圓方程為()A. B.C. D.10.今天是星期四,經(jīng)過天后是星期()A.三 B.四C.五 D.六11.已知方程表示的曲線是焦點在軸上的橢圓,則的取值范圍A. B.C. D.12.中國歷法推測遵循以測為輔,以算為主的原則.例如《周髀算經(jīng)》里對二十四節(jié)氣的晷影長的記錄中,冬至和夏至的晷影長是實測得到的,其它節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計算得出的.二十四節(jié)氣中,從冬至到夏至的十三個節(jié)氣依次為:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種、夏至.已知《周髀算經(jīng)》中記錄某年的冬至的晷影長為13尺,夏至的晷影長是1.48尺,按照上述規(guī)律,那么《周髀算經(jīng)》中所記錄的立夏的晷影長應為()A.尺 B.尺C.尺 D.尺二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在點處的切線方程為______14.關于曲線,給出下列三個結論:①曲線關于原點對稱,但不關于軸、軸對稱;②曲線恰好經(jīng)過4個整點(即橫、縱坐標均為整數(shù)的點);③曲線上任意一點到原點的距離都不大于.其中,正確結論的序號是________.15.已知數(shù)列滿足,,的前項和為,則______.16.已知直線,拋物線上一動點到直線l的距離為d,則的最小值是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知橢圓的左頂點,過右焦點的直線與橢圓相交于兩點,當直線軸時,.(1)求橢圓的方程;(2)記,的面積分別為,求的取值范圍;(3)若的重心在圓上,求直線的斜率.18.(12分)如圖,在四棱柱中,側棱底面,,,,,,,()(1)求證:平面;(2)若直線與平面所成角的正弦值為,求的值;(3)現(xiàn)將與四棱柱形狀和大小完全相同的兩個四棱柱拼成一個新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫出的解析式.(直接寫出答案,不必說明理由)19.(12分)已知函數(shù)(a是常數(shù)).(1)當時,求的單調區(qū)間與極值;(2)若,求a的取值范圍.20.(12分)分別求出滿足下列條件的橢圓的標準方程:(1)焦點在y軸,短軸長為2,離心率為;(2)短軸一端點P與兩焦點,連線所構成的三角形為等邊三角形21.(12分)已知數(shù)列的前項和為,,.(1)求的通項公式;(2)求數(shù)列的前項和;(3)若數(shù)列,,求前項和.22.(10分)已知正項等比數(shù)列的前項和為,滿足,.記.(1)求數(shù)列的通項公式;(2)設數(shù)列前項和,求使得不等式成立的的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由切線的性質,可得,,再結合橢圓定義,即得解【詳解】因為過點的直線圓的切線,,,所以由橢圓定義可得,可得橢圓的離心率故選:A2、D【解析】由,得在上單調遞增,并且由的圖象是向上凸,進而判斷選項.【詳解】由,得在上單調遞增,因為,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以D正確,C不正確.故選:D.【點睛】本題考查以數(shù)學文化為背景,導數(shù)的幾何意義,根據(jù)函數(shù)的單調性比較函數(shù)值的大小,屬于中檔題型.3、A【解析】當時,顯然不成立,當時,分離變量,利用導數(shù)求得函數(shù)的單調性與最值,即可求解.【詳解】當時,可得顯然不成立;當時,由于方程可轉化為,令,可得,當時,,函數(shù)單調遞增;當時,,函數(shù)單調遞減,所以當時,函數(shù)取唯一的極大值,也是最大值,所以,所以,即,所以實數(shù)m的取值范圍.故選:A.4、D【解析】根據(jù)橢圓的定義,寫出,可求出的和,又根據(jù)關于縱軸成對稱分布,得到結果詳解】設橢圓右焦點為F2,由橢圓的定義知,2,,,由題意知,,,關于軸成對稱分布,又,故所求的值為故選:D5、B【解析】令,則,,然后利用函數(shù)的知識可得答案.【詳解】令,則,當時,當時,,由雙勾函數(shù)的知識可得在上單調遞增,在上單調遞減所以當即時,取得最大值,所以此數(shù)列的最大項是,最小項為故選:B6、C【解析】如圖由題可得,進而可得,即求.【詳解】如圖根據(jù)對稱性,點D在直線y=x上,可設,則,∴,可得,,即,又解得.故選:C.7、C【解析】根據(jù)程序框圖的循環(huán)邏輯寫出執(zhí)行步驟,即可確定輸出結果.【詳解】根據(jù)流程圖的執(zhí)行邏輯,其執(zhí)行步驟如下:1、成立,則;2、成立,則;3、成立,則;4、成立,則;5、不成立,輸出;故選:C8、C【解析】設是界限上的一點,則,即,再根據(jù)雙曲線的定義即可得出答案.【詳解】解:設是界限上的一點,則,所以,即,在中,,所以點的軌跡為雙曲線,即該界線所在曲線為雙曲線.故選:C.9、A【解析】求得拋物線的焦點從而求得,再結合題意求得,即可寫出橢圓方程.【詳解】因為拋物線的焦點坐標為,故可得;又短軸長為2,故可得,即;故橢圓方程為:.故選:.10、C【解析】求出二項式定理的通項公式,得到除以7余數(shù)是1,然后利用周期性進行計算即可【詳解】解:一個星期的周期是7,則,即除以7余數(shù)是1,即今天是星期四,經(jīng)過天后是星期五,故選:11、A【解析】根據(jù)條件,列出滿足條件的不等式,求的取值范圍.【詳解】曲線表示交點在軸的橢圓,,解得:.故選A【點睛】本題考查根據(jù)橢圓的焦點位置求參數(shù)的取值范圍,意在考查基本概念,屬于基礎題型.12、B【解析】根據(jù)等差數(shù)列定義求得公差,再求解立夏的晷影長在數(shù)列中所對應的項即可【詳解】設從冬至到夏至的十三個節(jié)氣依次為等差數(shù)列的前13項,則所以公差為,則立夏的晷影長應為(尺)故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出、的值,利用點斜式可得出所求切線的方程.【詳解】因為,則,所以,,,故所求切線方程為,即.故答案為:.14、①③【解析】設為曲線上任意一點,判斷、、是否滿足曲線方程即可判斷①;求出曲線過的整點即可判斷②;由條件利用即可得,即可判斷③;即可得解.【詳解】設為曲線上任意一點,則,設點關于原點、軸、軸的對稱點分別為、、,因為;;;所以點在曲線上,點、點不在曲線上,所以曲線關于原點對稱,但不關于軸、軸對稱,故①正確;當時,;當,.此外,當時,;當時,.故曲線過整點,,,,,,故②錯誤;又,所以恒成立,由可得,當且僅當時等號成立,所以,所以曲線上任一點到原點的距離,故③正確.故答案為:①③.【點睛】本題考查了與曲線方程有關的命題真假判斷,屬于中檔題.15、【解析】分析出當為正奇數(shù)時,,可求得的值,再分析出當為正偶數(shù)時,,可求得的值,進而可求得的值.【詳解】由題知,當為正奇數(shù)時,,于是,,,,,所以.又因為當為正偶數(shù)時,,且,所以兩式相加可得,于是,兩式相減得.所以,故.故答案為:.【點睛】關鍵點點睛:本題的解題關鍵在于分析出當為正奇數(shù)時,,以及當為正偶數(shù)時,,找出規(guī)律,結合并項求和法求出以及的值.16、##【解析】作直線l,拋物線準線且交y軸于A點,根據(jù)拋物線定義有,進而判斷目標式最小時的位置關系,結合點線距離公式求最小值.【詳解】如下圖示:若直線l,拋物線準線且交y軸于A點,則,,由拋物線定義知:,則,所以,要使目標式最小,即最小,當共線時,又,此時.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)根據(jù)已知條件得到,,即可得到橢圓的方程.(2)首先設直線為,與橢圓聯(lián)立得到,根據(jù)得到的范圍,從而得到的范圍.(3)設重心,根據(jù)重心性質得到,,再代入求解即可.小問1詳解】因為左頂點,所以,根據(jù),可得,解得,所以;【小問2詳解】設直線為,則,則,,那么,根據(jù)解得,所以.【小問3詳解】設重心,則:,,所以,所以,即所求直線的斜率為.18、(1)證明見解析(2)(3)【解析】(1)取得中點,連接,可證明四邊形是平行四邊形,再利用勾股定理的逆定理可得,即,又側棱底面,可得,利用線面垂直的判定定理即可證明;(2)通過建立空間直角坐標系,由線面角的向量公式即可得出;(3)由題意可與左右平面,,上或下面,拼接得到方案,新四棱柱共有此4種不同方案.寫出每一方案下的表面積,通過比較即可得出【詳解】(1)證明:取的中點,連接,,,四邊形是平行四邊形,,且,,,,又,側棱底面,,,平面(2)以為坐標原點,、、的方向為軸的正方向建立空間直角坐標系,則,,,,,設平面的一個法向量為,則,取,則,設與平面所成角為,則,解得,故所求(3)由題意可與左右平面,,上或下面,拼接得到方案新四棱柱共有此4種不同方案寫出每一方案下的表面積,通過比較即可得出【點睛】本題主要考查線面垂直的判定定理的應用,利用向量求線面角、柱體的定義應用和表面積的求法,意在考查學生的直觀想象能力,邏輯推理能力,數(shù)學運算能力及化歸與轉化能力,屬于中檔題19、(1)函數(shù)在上單調遞增,在上單調遞減,極小值是,無極大值.(2)【解析】(1)由當,得到,求導,再由,求解;(2)將,轉化為成立,令,求其最大值即可.【小問1詳解】解:當時,,定義域為,所以,當時,,當時,,所以函數(shù)在上單調遞增,在上單調遞減,所以時,取得極小值是,無極大值.【小問2詳解】因為,即成立.設,則,當時,,當時,,所以在上單調遞增,在上單調遞減,所以,所以,即.20、(1)(2)【解析】(1)設出橢圓方程,根據(jù)短軸長和離心率求出,,從而求出橢圓方程;(2)短軸端點與焦點相連所得的線段長即為,從而求出,得到橢圓方程.【小問1詳解】設橢圓方程為,則,,則,解得:,則該橢圓的方程為【小問2詳解】設橢圓方程為,由題得:,,則,則該橢圓的方程為21、(1)(2)(3)【解析】(1)由可求得的值,令,由可得,兩式作差可推導出數(shù)列為等比數(shù)列,確定該數(shù)列的首項和公比,即可求得數(shù)列的通項公式;(2)求得,利用錯位相減法可求得;(3)利用奇偶分組法,結合等差數(shù)列和等比數(shù)列的求和公式可求得.【小問1詳解】解:當時,,可得,當時,由可得,上述兩個等式作差得,可得,所以,數(shù)列是以為首項,以為公比的等比數(shù)列,故.【小問2詳解】解:,所以,,所以,,上述兩個等式作差得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版高新技術企業(yè)研發(fā)項目采購合同2篇
- 二零二五年度高校與公益組織合作辦學合同3篇
- 二零二五版家庭健康養(yǎng)生及食療服務合同3篇
- 二零二五年度生態(tài)雞養(yǎng)殖基地購銷合同標準版3篇
- 二零二五版桉樹生物質能源開發(fā)合同2篇
- 二零二五年房地產(chǎn)銷售代理合同中止及終止協(xié)議6篇
- 二零二五版智能倉儲貨物承包運輸一體化合同3篇
- 二零二五年智能空調銷售及綠色環(huán)保安裝合同樣本3篇
- 二零二五年度車庫產(chǎn)權買賣及物業(yè)服務合同范本3篇
- 二零二五年文化藝術品油漆保護修復合同3篇
- 春節(jié)文化常識單選題100道及答案
- 2024年杭州師范大學附屬醫(yī)院招聘高層次緊缺專業(yè)人才筆試真題
- 制造業(yè)BCM業(yè)務連續(xù)性管理培訓
- 24年追覓在線測評28題及答案
- TGDNAS 043-2024 成人靜脈中等長度導管置管技術
- 《陸上風電場工程概算定額》NBT 31010-2019
- 工程建設項目內外關系協(xié)調措施
- 招投標法考試試題及答案
- 皮帶輸送機工程施工電氣安裝措施要點
- 藥房(冰柜)溫濕度表
- QJ903.9A-1995航天產(chǎn)品工藝文件管理制度管理用工藝文件編制規(guī)則
評論
0/150
提交評論