




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省嘉祥一中2025屆高二上數(shù)學期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若,則()A. B.0C.1 D.22.已知橢圓的左,右兩個焦點分別為,若橢圓C上存在一點A,滿足,則橢圓C的離心率的取值范圍是()A. B.C. D.3.已知雙曲線左右焦點為,過的直線與雙曲線的右支交于,兩點,且,若線段的中垂線過點,則雙曲線的離心率為()A.3 B.2C. D.4.若數(shù)列滿足,則()A. B.C. D.5.從裝有2個紅球和2個黑球的口袋內任取兩個球,那么互斥而不對立的事件是()A.至少有一個黑球與都是黑球B.至少有一個黑球與至少有一個紅球C.恰好有一個黑球與恰好有兩個黑球D.至少有一個黑球與都是紅球6.在長方體,,則異面直線與所成角的余弦值是()A. B.C. D.7.設,,則“”是“”的A.充要條件 B.充分而不必要條件C.必要而不充分條件 D.既不充分也不必要條件8.直線在y軸上的截距為()A.-1 B.1C. D.9.在中,內角所對的邊為,若,,,則()A. B.C. D.10.某校開學“迎新”活動中要把3名男生,2名女生安排在5個崗位,每人安排一個崗位,每個崗位安排一人,其中甲崗位不能安排女生,則安排方法的種數(shù)為()A.72 B.56C.48 D.3611.在數(shù)列中,,則等于A. B.C. D.12.圓()上點到直線的最小距離為1,則A.4 B.3C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)集合,若A中有且僅有4個元素,則滿足條件的整數(shù)a的個數(shù)為______14.已知平行四邊形內接于橢圓,且的斜率之積為,則橢圓的離心率為________15.直線被圓所截得的弦的長為_____16.甲、乙兩人下棋,甲獲勝的概率為,乙獲勝的概率為,則甲、乙兩人下成和棋的概率為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中為常數(shù),且(1)求證:時,;(2)已知a,b,p,q為正實數(shù),滿足,比較與的大小關系.18.(12分)記為數(shù)列的前項和,且(1)求的通項公式;(2)設,求數(shù)列的前項和19.(12分)已知橢圓的左、右焦點分別為,過右焦點作直線交于,其中的周長為的離心率為.(1)求的方程;(2)已知的重心為,設和的面積比為,求實數(shù)的取值范圍.20.(12分)在棱長為4的正方體中,點分別在線段上,點在線段延長線上,,,連接交線段于點.(1)求證平面;(2)求異面直線所成角的余弦值.21.(12分)已知命題:“,”,命題:“,”,若“且”為真命題,求實數(shù)的取值范圍22.(10分)已知拋物線的焦點為,點在第一象限且為拋物線上一點,點在點右側,且△恰為等邊三角形(1)求拋物線的方程;(2)若直線與交于兩點,向量的夾角為(其中為坐標原點),求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求出函數(shù)的導數(shù),直接代入即可求值.【詳解】因為,所以,所以,所以.故選:D.2、C【解析】根據(jù)題意可知當A為橢圓的上下頂點時,即可滿足橢圓C上存在一點A,使得,由此可得,解此不等式可得答案.【詳解】由橢圓的對稱性可知,當A為橢圓的上下頂點時,最大,故只需即可滿足題意,設O為坐標原點,則只需,即有,所以,解得,故選:C3、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關系式,變形后可得離心率【詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C4、C【解析】利用前項積與通項的關系可求得結果.【詳解】由已知可得.故選:C.5、C【解析】列舉每個事件所包含的基本事件,結合互斥事件和對立事件的定義,逐項判斷.【詳解】A:事件:“至少有一個黑球”與事件:“都是黑球”可以同時發(fā)生,如:兩個都是黑球,這兩個事件不是互斥事件,故錯誤;B:事件:“至少有一個黑球”與事件:“至少有一個紅球”可以同時發(fā)生,如:一個紅球一個黑球,故錯誤;C:事件:“恰好有一個黑球”與事件:“恰有兩個黑球”不能同時發(fā)生,但從口袋中任取兩個球時還有可能是兩個都是紅球,兩個事件是互斥事件但不是對立事件,故正確D:事件:“至少有一個黑球”與“都是紅球”不能同時發(fā)生,但一定會有一個發(fā)生,這兩個事件是對立事件,故錯誤;故選:C6、A【解析】在長方體中建立空間直角坐標系,求出相關點的坐標,進而求得向量,的坐標,利用向量的夾角公式即可求得答案.詳解】如圖,由題意可知DA,DC,兩兩垂直,則以D為原點,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系.設,則,,,,,,從而,故異面直線與所成角的余弦值是,故選:A.7、C【解析】不能推出,反過來,若則成立,故為必要不充分條件.8、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為.故選:A9、B【解析】利用正弦定理角化邊得到,再利用余弦定理構造方程求得結果.【詳解】,,由余弦定理得:,,.故選:B.10、A【解析】以位置優(yōu)先法去安排即可解決.【詳解】第一步:安排甲崗位,由3名男生中任選1人,有3種方法;第二步:安排余下的4個崗位,由2名女生和余下的2名男生任意安排即可,有種方法故安排方法的種數(shù)為故選:A11、D【解析】分析:已知逐一求解詳解:已知逐一求解.故選D點睛:對于含有的數(shù)列,我們看作擺動數(shù)列,往往逐一列舉出來觀察前面有限項的規(guī)律12、A【解析】根據(jù)題意可得,圓心到直線的距離等于,即,求得,所以A選項是正確的.【點睛】判斷直線與圓的位置關系的常見方法:(1)幾何法:利用d與r的關系.(2)代數(shù)法:聯(lián)立方程之后利用判斷.(3)點與圓的位置關系法:若直線恒過定點且定點在圓內,可判斷直線與圓相交.上述方法中常用的是幾何法,點與圓的位置關系法適用于動直線問題二、填空題:本題共4小題,每小題5分,共20分。13、32【解析】作出的圖像,由時,不等式成立,所以,判斷出符合條件的非零整數(shù)根只有三個,即等價于時,;時,;利用數(shù)形結合,進行求解.【詳解】作出的圖像如圖所示:因為時,不等式成立,所以,符合條件的非零整數(shù)根只有三個.由可得:時,;時,;所以在y軸左側,的圖像都在的下方;在y軸右側,的圖像都在的上方;而,,,,.平移直線,由圖像可知:當時,集合A中除了0只含有1,2,3,符合題意,此時整數(shù)a可以?。?23,-22,-21……-9.一共15個;當時,集合A中除了0含有1,-1,-2,符合題意.當時,集合A中除了0只含有-1,-2,-3,符合題意,此時整數(shù)a可以?。?,6,7……20一共16個.所以整數(shù)a的值一共有15+1+16=32(個).故答案為:32【點睛】分離參數(shù)法求零點個數(shù)的問題是轉化為,分別做出和的圖像,觀察交點的個數(shù)即為零點的個數(shù).用數(shù)形結合法解決零點問題常有以下幾種類型:(1)零點個數(shù):幾個零點;(2)幾個零點的和;(3)幾個零點的積.14、##0.5【解析】根據(jù)對稱性設,,,根據(jù)得到,再求離心率即可.【詳解】由對稱性,,關于原點對稱,設,,,,故.故答案為:15、【解析】圓轉化為標準式方程,圓心到直線的距離為,圓的半徑為,因此所求弦長為考點:1.圓的方程;2.直線被圓截得的弦長的求法;16、##【解析】直接根據(jù)概率和為1計算得到答案.【詳解】.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)導數(shù)判斷出函數(shù)的單調性求出其最大值,即可證出;(2)由(1)知:,再變形即可得出小問1詳解】因為,∴在上單調遞減,又因,故當時,;當時,,所以在上單調遞增,在上單調遞減,所以.【小問2詳解】由(1)知:,兩邊同乘以a得:,∴,即.18、(1)(2)【解析】(1)利用,再結合等比數(shù)列的概念,即可求出結果;(2)由(1)可知數(shù)列是以為首項,公差為的等差數(shù)列,根據(jù)等差數(shù)列的前項和公式,即可求出結果.【小問1詳解】解:當時,,解得;當且時,所以所以是以為首項,為公比的等比數(shù)列所以;【小問2詳解】解:由(1)可知,所以,又,所以數(shù)列是以為首項,公差為的等差數(shù)列,所以數(shù)列的前項和.19、(1)(2)【解析】(1)已知焦點弦三角形的周長,以及離心率求橢圓方程,待定系數(shù)直接求解即可.(2)第一步設點設直線,第二步聯(lián)立方程韋達定理,第三步條件轉化,利用三角形等面積法,列方程,第四步利用韋達定理進行轉化,計算即可.【小問1詳解】因為的周長為,的離心率為,所以,,所以,,又,所以橢圓的方程為.【小問2詳解】方法一:,,的面積為,的面積為,則,得,①設,與橢圓C方程聯(lián)立,消去得,由韋達定理得,.令,②則,可得當時,當時,所以,又解得③由①②③得,解得.所以實數(shù)的取值范圍是.方法二:同方法一可得的面積為,的面積為,則,得,①設,與橢圓C方程聯(lián)立,消去得,由韋達定理得,.所以因為,所以解得②由①②解得.所以實數(shù)的取值范圍是.20、(1)證明見解析(2)【解析】(1)由線面平行的判定定理證明;(2)建立空間直角坐標系,用空間向量法求異面直線所成的角【小問1詳解】證明:且,由三角形相似可得,,,又,,又平面,平面平面;【小問2詳解】解:以為坐標原點,分別以為軸建立空間坐標系,如圖.則設異面直線所成角為,則21、或【解析】先分別求出,為真時,的范圍;再求交集,即可得出結果.【詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國航空運輸貨物保險行業(yè)市場深度調查及投資前景預測報告
- 2025-2030年中國純銀首飾市場運行狀況及發(fā)展趨勢分析報告
- 2025-2030年中國移動支付產(chǎn)業(yè)十三五規(guī)劃與發(fā)展前景分析報告
- 2025年天津市建筑安全員B證(項目經(jīng)理)考試題庫
- 大連東軟信息學院《工程審計專業(yè)模擬實驗》2023-2024學年第二學期期末試卷
- 廣州體育職業(yè)技術學院《生命教育概論》2023-2024學年第二學期期末試卷
- 哈爾濱工業(yè)大學《三維場景制作》2023-2024學年第二學期期末試卷
- 商丘學院《智能駕駛原理》2023-2024學年第二學期期末試卷
- 2024年物資采購投標書:標準格式3篇
- 電氣成套廠檢驗員培訓
- 新入職消防安全培訓
- 醫(yī)保信息系統(tǒng)數(shù)據(jù)安全管理制度
- 統(tǒng)編版五年級語文下冊1古詩三首《四時田園雜興(其三十一)》課件
- 酒店2024年保安部工作計劃024酒店工作計劃
- 維修基金使用合同范例
- c語言課件教學下載
- 2024購房合同購房定金合同
- 2024年全國中學生生物學聯(lián)賽試題含答案
- 高速公路施工現(xiàn)場安全管理制度
評論
0/150
提交評論