版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆湖北省天門市、仙桃市、潛江市數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓:,點是直線:上的動點,過點引圓的兩條切線、,其中、為切點,則直線經(jīng)過定點()A. B.C. D.2.已知,是空間中的任意兩個非零向量,則下列各式中一定成立的是()A. B.C. D.3.已知命題p:?x>2,x2>2x,命題q:?x0∈R,ln(x02+1)<0,則下列命題是真命題的是()A.p∧ B.p∨C.p∧q D.p∨q4.已知過拋物線焦點的直線交拋物線于,兩點,則的最小值為()A. B.2C. D.35.設(shè)集合,集合,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.在等比數(shù)列中,,,則()A.2 B.4C.6 D.87.曲線上存在兩點A,B到直線到距離等于到的距離,則()A.12 B.13C.14 D.158.我國古代的數(shù)學(xué)名著《九章算術(shù)》中有“衰分問題”:今有女子善織,日自倍,五日織五尺,問次日織幾問?其意為:一女子每天織布的尺數(shù)是前一天的2倍,5天共織布5尺,請問第二天織布的尺數(shù)是()A. B.C. D.9.復(fù)數(shù),則對應(yīng)的點所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限10.命題“對任何實數(shù),都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得11.如圖,修建一條公路需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切).已知環(huán)湖彎曲路段為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為()A.B.C.D.12.已知拋物線,則拋物線的焦點到其準(zhǔn)線的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓錐底面半徑為1,高為,則該圓錐的側(cè)面積為_____14.已知實數(shù),滿足不等式組,則目標(biāo)函數(shù)的最大值為__________.15.已知為平面的一個法向量,為直線的方向向量.若,則__________.16.直線的傾斜角為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線C:的離心率為,過點作垂直于x軸的直線截雙曲線C所得弦長為(1)求雙曲線C的方程;(2)直線()與該雙曲線C交于不同的兩點A,B,且A,B兩點都在以點為圓心的同一圓上,求m的取值范圍18.(12分)已知數(shù)列,,其中,是各項均為正數(shù)的等比數(shù)列,滿足,,且(1)求數(shù)列,的通項公式;(2)設(shè),求數(shù)列的前n項和19.(12分)兩個頂點、的坐標(biāo)分別是、,邊、所在直線的斜率之積等于,頂點的軌跡記為.(1)求頂點的軌跡的方程;(2)若過點作直線與軌跡相交于、兩點,點恰為弦中點,求直線的方程;(3)已知點為軌跡的下頂點,若動點在軌跡上,求的最大值.20.(12分)如圖,在四棱錐中,平面,是等邊三角形.(1)證明:平面平面.(2)求點到平面的距離.21.(12分)已知,2,4,6中的三個數(shù)為等差數(shù)列的前三項,且100不在數(shù)列中,102在數(shù)列中.(1)求數(shù)列的通項;(2)設(shè),求數(shù)列的前項和.22.(10分)在四棱錐中,底面ABCD是矩形,點E是線段PA的中點.(1)求證:平面EBD;(2)若是等邊三角形,,平面平面ABCD,求點E到平面PDB的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)圓的切線性質(zhì),結(jié)合圓的標(biāo)準(zhǔn)方程、圓與圓的位置關(guān)系進(jìn)行求解即可.【詳解】因為、是圓的兩條切線,所以,因此點、在以為直徑的圓上,因為點是直線:上的動點,所以設(shè),點,因此的中點的橫坐標(biāo)為:,縱坐標(biāo)為:,,因此以為直徑的圓的標(biāo)準(zhǔn)方程為:,而圓:,得:,即為直線的方程,由,所以直線經(jīng)過定點,故選:D【點睛】關(guān)鍵點睛:由圓的切線性質(zhì)得到點、在以為直徑的圓上,運用圓與圓的位置關(guān)系進(jìn)行求解是解題的關(guān)鍵.2、C【解析】利用向量數(shù)量積的定義及運算性質(zhì)逐一分析各選項即可得答案.【詳解】解:對A:因為,所以,故選項A錯誤;對B:因為,故選項B錯誤;對C:因為,故選項C正確;對D:因為,故選項D錯誤故選:C.3、B【解析】取x=4,得出命題p是假命題,由對數(shù)的運算得出命題q是假命題,再判斷選項.【詳解】命題p:?x>2,x2>2x,是假命題,例如取x=4,則42=24;命題q:?x0∈R,ln(x02+1)<0,是假命題,∵?x∈R,ln(x2+1)≥0.則下列命題是真命題的是.故選:B.4、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到韋達(dá)定理,求得,利用拋物線定義,將目標(biāo)式轉(zhuǎn)化為關(guān)于的代數(shù)式,消元后,利用基本不等式即可求得結(jié)果.【詳解】因為拋物線的焦點的坐標(biāo)為,顯然要滿足題意,直線的斜率存在,設(shè)直線的方程為聯(lián)立可得,其,設(shè)坐標(biāo)為,顯然,則,,根據(jù)拋物線定義,MF=故=4+4令,故4+4當(dāng)且僅當(dāng),即時取得最小值.故選:D.【點睛】本題考察拋物線中的最值問題,涉及到韋達(dá)定理的使用,基本不等式的使用;其中利用的關(guān)系,以及拋物線的定義轉(zhuǎn)化目標(biāo)式,是解決問題的關(guān)鍵.5、A【解析】解不等式求集合,然后判斷兩個集合的關(guān)系【詳解】,解得,故,可化為或,解得或,故,故“”是“”的充分不必要條件故選:A6、D【解析】由等比中項轉(zhuǎn)化得,可得,求解基本量,由等比數(shù)列通項公式即得解【詳解】設(shè)公比為,則由,得,即故,解得故選:D7、D【解析】由題可知A,B為半圓C與拋物線的交點,利用韋達(dá)定理及拋物線的定義即求.【詳解】由曲線,可得,即,為圓心為,半徑為7半圓,又直線為拋物線的準(zhǔn)線,點為拋物線的焦點,依題意可知A,B為半圓C與拋物線的交點,由,得,設(shè),則,,∴.故選:D.8、C【解析】根據(jù)等比數(shù)列求和公式求出首項即可得解.【詳解】由題可得該女子每天織布的尺數(shù)成等比數(shù)列,設(shè)其首項為,公比為,則,解得所以第二天織布的尺數(shù)為.故選:C9、C【解析】化簡復(fù)數(shù),根據(jù)復(fù)數(shù)的幾何意義,即可求解.【詳解】由題意,復(fù)數(shù),所以復(fù)數(shù)對應(yīng)的點為位于第三象限.故選:C.10、B【解析】可將原命題變成全稱命題形式,而全稱命題的否定為特稱命題,即可選出答案.【詳解】命題“對任何實數(shù),都有”,可寫成:,使得,此命題為全稱命題,故其否定形式為:,使得.故選:B.11、D【解析】由題設(shè),“需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切)“可得出此兩點處的切線正是兩條直道所在直線,由此規(guī)律驗證四個選項即可得出答案【詳解】由函數(shù)圖象知,此三次函數(shù)在上處與直線相切,在點處與相切,下研究四個選項中函數(shù)在兩點處的切線A:,將0代入,此時導(dǎo)數(shù)為,與點處切線斜率為矛盾,故A錯誤B:,將0代入,此時導(dǎo)數(shù)為,不為,故B錯誤;C:,將2代入,此時導(dǎo)數(shù)為,與點處切線斜率為3矛盾,故C錯誤;D:,將0,2代入,解得此時切線的斜率分別是,3,符合題意,故D正確;故選:D.12、D【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,由此確定的值即可.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,,拋物線的焦點到其準(zhǔn)線的距離為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知求得母線長,代入圓錐側(cè)面積公式求解【詳解】由已知可得r=1,h=,則圓錐的母線長l=,∴圓錐的側(cè)面積S=πrl=2π故答案為2π【點睛】本題考查圓錐側(cè)面積的求法,側(cè)面積公式S=πrl.14、##【解析】畫出可行域,通過平移基準(zhǔn)直線到可行域邊界來求得的最大值.【詳解】,畫出可行域如下圖所示,由圖可知,當(dāng)時,取得最大值.故答案為:15、##【解析】根據(jù)線面平行列方程,化簡求得的值.【詳解】由于,所以.故答案為:16、【解析】把直線方程化為斜截式,再利用斜率與傾斜角的關(guān)系即可得出【詳解】設(shè)直線的傾斜角為由直線化為,故,又,故,故答案為【點睛】一般地,如果直線方程的一般式為,那么直線的斜率為,且,其中為直線的傾斜角,注意它的范圍是三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)利用雙曲線離心率、點在雙曲線上及得到關(guān)于、、的方程組,進(jìn)而求出雙曲線的標(biāo)準(zhǔn)方程;(2)聯(lián)立直線和雙曲線的方程,得到關(guān)于的一元二次方程,利用直線和雙曲線的位置關(guān)系、根與系數(shù)的關(guān)系得到兩個交點坐標(biāo)間的關(guān)系,利用A,B兩點都在以點為圓心的同一圓上得到,再利用向量的數(shù)量積為0得到、的關(guān)系,進(jìn)而消去得到的不等式進(jìn)行求解.【小問1詳解】解:因為過點作垂直于x軸的直線截雙曲線C所得弦長為,所以點在雙曲線上,由題意,得,解得,,,即雙曲線的標(biāo)準(zhǔn)方程為.【小問2詳解】解:聯(lián)立,得,因為直線與該雙曲線C交于不同的兩點,所以且,即且,設(shè),,的中點,則,,因為A,B兩點都在以點為圓心的同一圓上,所以,即,因為,,所以,即,將代入,得,解得或,即m的取值范圍為或.18、(1),(2)【解析】(1)利用公式法,基本量代換求出數(shù)列,的通項公式;(2)利用錯位相減法求和.【小問1詳解】設(shè)等比數(shù)列的公比為q,因為,所以,所以.所以,所以,所以.所以,所以,【小問2詳解】,所以,,所以.所以19、(1)(2)(3)【解析】(1)先表示出邊、所在直線的斜率,然后根據(jù)兩條直線的斜率關(guān)系建立方程即可;(2)聯(lián)立直線與橢圓方程,利用韋達(dá)定理和中點坐標(biāo)公式即可求出直線的斜率;(3)先表示出,然后利用橢圓的性質(zhì),進(jìn)而確定的最大值.【小問1詳解】設(shè)點,則由可得:化簡得:故頂點的軌跡的方程:【小問2詳解】當(dāng)直線的斜率不存在時,顯然不符合題意;當(dāng)直線的斜率存在時,設(shè)直線的方程為聯(lián)立方程組消去可得:設(shè)直線與軌跡的交點,的坐標(biāo)分別為由韋達(dá)定理得:點為、兩點的中點,可得:,即則有:解得:故求直線的方程為:【小問3詳解】由(1)可知,設(shè)則有:又點滿足,即由橢圓的性質(zhì)得:所以當(dāng)時,20、(1)證明見解析;(2).【解析】(1)根據(jù)等邊三角形的性質(zhì)、線面垂直的性質(zhì),結(jié)合面面垂直的判定定理進(jìn)行證明即可;(2)利用余弦定理,結(jié)合三棱錐的等積性進(jìn)行求解即可.【小問1詳解】證明:設(shè),因為是等邊三角形,且,所以是的中點,則.又,所以,所以,即.又平面平面,所以.又,所以平面.因為平面,所以平面平面.【小問2詳解】解:因為,所以.在中,,所以,則又平面,所以.如圖,連接,則,所以.設(shè)點到平面的距離為,因為,所以,解得,即點到平面的距離為.21、(1)(2)【解析】(1)確定數(shù)列為遞增數(shù)列,然后由4個數(shù)確定等差數(shù)列,得通項公式,驗證100和102是否為數(shù)列中的項得結(jié)論;(2)由裂項相消法求和【小問1詳解】首先數(shù)列是遞增數(shù)列,當(dāng)2,4,6為的前三項時,易知此時,100,102都是該數(shù)列中的項,不滿足題意當(dāng),2,6為的前三項時,易知此時,100不是該數(shù)列中的項,102是該數(shù)列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《皮膚性病學(xué)濕疹》課件
- 行政后勤財務(wù)報銷審核
- 母親節(jié) 營銷新視角
- 體育行業(yè)話務(wù)員工作總結(jié)
- 餐飲行業(yè)服務(wù)員的服務(wù)宗旨
- 體育場館的衛(wèi)生清潔
- 2023-2024年企業(yè)主要負(fù)責(zé)人安全培訓(xùn)考試題考題
- 2023-2024安全培訓(xùn)考試題及答案(新)
- 函授專科畢業(yè)自我鑒定15篇
- 課題研究報告
- 建筑施工安全生產(chǎn)隱患識別圖集(鋼結(jié)構(gòu)工程)
- 城市道路與開放空間低影響開發(fā)雨水設(shè)施
- 電氣二次危險點分析及控制措施
- 初中必背古詩文138首
- 藍(lán)色國家科學(xué)基金4.3杰青優(yōu)青人才科學(xué)基金答辯模板
- DLT 5434-2021 電力建設(shè)工程監(jiān)理規(guī)范表格
- 2024年房屋交接確認(rèn)書
- 拓展低空經(jīng)濟(jì)應(yīng)用場景實施方案
- 北京市東城區(qū)2023-2024學(xué)年八年級上學(xué)期期末生物試題【含答案解析】
- 天皰瘡臨床分期與治療方案研究
- 開放系統(tǒng)10861《理工英語(4)》期末機(jī)考真題及答案(第102套)
評論
0/150
提交評論