版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省天門(mén)、仙桃、潛江區(qū)2025屆高三數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,角,,的對(duì)邊分別為,,,若,,,則()A. B.3 C. D.42.已知直線(xiàn)y=k(x+1)(k>0)與拋物線(xiàn)C相交于A,B兩點(diǎn),F(xiàn)為C的焦點(diǎn),若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.43.若函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為().A. B. C. D.4.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數(shù),那么a+b的值是A. B.C. D.5.如圖,在矩形中的曲線(xiàn)分別是,的一部分,,,在矩形內(nèi)隨機(jī)取一點(diǎn),若此點(diǎn)取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關(guān)系不能確定6.雙曲線(xiàn)C:(,)的離心率是3,焦點(diǎn)到漸近線(xiàn)的距離為,則雙曲線(xiàn)C的焦距為()A.3 B. C.6 D.7.已知集合的所有三個(gè)元素的子集記為.記為集合中的最大元素,則()A. B. C. D.8.已知,則的大小關(guān)系為A. B. C. D.9.如圖,在平面四邊形ABCD中,若點(diǎn)E為邊CD上的動(dòng)點(diǎn),則的最小值為()A. B. C. D.10.在棱長(zhǎng)為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點(diǎn),若三棱錐P?ABC的四個(gè)頂點(diǎn)都在球O的球面上,則球O的表面積為()A.12 B. C. D.1011.已知是雙曲線(xiàn)的左右焦點(diǎn),過(guò)的直線(xiàn)與雙曲線(xiàn)的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線(xiàn)的離心率為()A. B. C. D.12.在平面直角坐標(biāo)系中,已知點(diǎn),,若動(dòng)點(diǎn)滿(mǎn)足,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.棱長(zhǎng)為的正四面體與正三棱錐的底面重合,若由它們構(gòu)成的多面體的頂點(diǎn)均在一球的球面上,則正三棱錐的內(nèi)切球半徑為_(kāi)_____.14.直線(xiàn)是曲線(xiàn)的一條切線(xiàn)為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)__________.15.的角所對(duì)的邊分別為,且,,若,則的值為_(kāi)_________.16.已知數(shù)列{an}的前n項(xiàng)和為Sn,向量(4,﹣n),(Sn,n+3).若⊥,則數(shù)列{}前2020項(xiàng)和為_(kāi)____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在綜合素質(zhì)評(píng)價(jià)的某個(gè)維度的測(cè)評(píng)中,依據(jù)評(píng)分細(xì)則,學(xué)生之間相互打分,最終將所有的數(shù)據(jù)合成一個(gè)分?jǐn)?shù),滿(mǎn)分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學(xué)生的在該維度的測(cè)評(píng)結(jié)果,在畢業(yè)班中隨機(jī)抽出一個(gè)班的數(shù)據(jù).該班共有60名學(xué)生,得到如下的列聯(lián)表:優(yōu)秀合格總計(jì)男生6女生18合計(jì)60已知在該班隨機(jī)抽取1人測(cè)評(píng)結(jié)果為優(yōu)秀的概率為.(1)完成上面的列聯(lián)表;(2)能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為性別與測(cè)評(píng)結(jié)果有關(guān)系?(3)現(xiàn)在如果想了解全校學(xué)生在該維度的表現(xiàn)情況,采取簡(jiǎn)單隨機(jī)抽樣方式在全校學(xué)生中抽取少數(shù)一部分來(lái)分析,請(qǐng)你選擇一個(gè)合適的抽樣方法,并解釋理由.附:0.250.100.0251.3232.7065.02418.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,以橢圓C左頂點(diǎn)T為圓心作圓,設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.(1)求橢圓C的方程;(2)求的最小值,并求此時(shí)圓T的方程;(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線(xiàn)MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:為定值.19.(12分)4月23日是“世界讀書(shū)日”,某中學(xué)開(kāi)展了一系列的讀書(shū)教育活動(dòng).學(xué)校為了解高三學(xué)生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個(gè)讀書(shū)小組(每名學(xué)生只能參加一個(gè)讀書(shū)小組)學(xué)生抽取12名學(xué)生參加問(wèn)卷調(diào)查.各組人數(shù)統(tǒng)計(jì)如下:小組甲乙丙丁人數(shù)12969(1)從參加問(wèn)卷調(diào)查的12名學(xué)生中隨機(jī)抽取2人,求這2人來(lái)自同一個(gè)小組的概率;(2)從已抽取的甲、丙兩個(gè)小組的學(xué)生中隨機(jī)抽取2人,用表示抽得甲組學(xué)生的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.20.(12分)2019年入冬時(shí)節(jié),長(zhǎng)春市民為了迎接2022年北京冬奧會(huì),增強(qiáng)身體素質(zhì),積極開(kāi)展冰上體育鍛煉.現(xiàn)從速滑項(xiàng)目中隨機(jī)選出100名參與者,并由專(zhuān)業(yè)的評(píng)估機(jī)構(gòu)對(duì)他們的鍛煉成果進(jìn)行評(píng)估打分(滿(mǎn)分為100分)并且認(rèn)為評(píng)分不低于80分的參與者擅長(zhǎng)冰上運(yùn)動(dòng),得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長(zhǎng)冰上運(yùn)動(dòng)進(jìn)行統(tǒng)計(jì),請(qǐng)將下列列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率在不超過(guò)0.01的前提下認(rèn)為擅長(zhǎng)冰上運(yùn)動(dòng)與性別有關(guān)系?擅長(zhǎng)不擅長(zhǎng)合計(jì)男性30女性50合計(jì)1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)21.(12分)在世界讀書(shū)日期間,某地區(qū)調(diào)查組對(duì)居民閱讀情況進(jìn)行了調(diào)查,獲得了一個(gè)容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫(xiě)下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān)?城鎮(zhèn)居民農(nóng)村居民合計(jì)經(jīng)常閱讀10030不經(jīng)常閱讀合計(jì)200(2)調(diào)查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出7人,參加一次閱讀交流活動(dòng),若活動(dòng)主辦方從這7位居民中隨機(jī)選取2人作交流發(fā)言,求被選中的2位居民都是經(jīng)常閱讀居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82822.(10分)已知,如圖,曲線(xiàn)由曲線(xiàn):和曲線(xiàn):組成,其中點(diǎn)為曲線(xiàn)所在圓錐曲線(xiàn)的焦點(diǎn),點(diǎn)為曲線(xiàn)所在圓錐曲線(xiàn)的焦點(diǎn).(Ⅰ)若,求曲線(xiàn)的方程;(Ⅱ)如圖,作直線(xiàn)平行于曲線(xiàn)的漸近線(xiàn),交曲線(xiàn)于點(diǎn),求證:弦的中點(diǎn)必在曲線(xiàn)的另一條漸近線(xiàn)上;(Ⅲ)對(duì)于(Ⅰ)中的曲線(xiàn),若直線(xiàn)過(guò)點(diǎn)交曲線(xiàn)于點(diǎn),求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。2、C【解析】
方法一:設(shè),利用拋物線(xiàn)的定義判斷出是的中點(diǎn),結(jié)合等腰三角形的性質(zhì)求得點(diǎn)的橫坐標(biāo),根據(jù)拋物線(xiàn)的定義求得,進(jìn)而求得.方法二:設(shè)出兩點(diǎn)的橫坐標(biāo),由拋物線(xiàn)的定義,結(jié)合求得的關(guān)系式,聯(lián)立直線(xiàn)的方程和拋物線(xiàn)方程,寫(xiě)出韋達(dá)定理,由此求得,進(jìn)而求得.【詳解】方法一:由題意得拋物線(xiàn)的準(zhǔn)線(xiàn)方程為,直線(xiàn)恒過(guò)定點(diǎn),過(guò)分別作于,于,連接,由,則,所以點(diǎn)為的中點(diǎn),又點(diǎn)是的中點(diǎn),則,所以,又所以由等腰三角形三線(xiàn)合一得點(diǎn)的橫坐標(biāo)為,所以,所以.方法二:拋物線(xiàn)的準(zhǔn)線(xiàn)方程為,直線(xiàn)由題意設(shè)兩點(diǎn)橫坐標(biāo)分別為,則由拋物線(xiàn)定義得又①②由①②得.故選:C【點(diǎn)睛】本小題主要考查拋物線(xiàn)的定義,考查直線(xiàn)和拋物線(xiàn)的位置關(guān)系,屬于中檔題.3、C【解析】
由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值.【詳解】解:把函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,,,則當(dāng)最大時(shí),,求得,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.4、B【解析】
依照偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x),且定義域關(guān)于原點(diǎn)對(duì)稱(chēng),a﹣1=﹣2a,即可得解.【詳解】根據(jù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng),且f(x)是定義在[a–1,2a]上的偶函數(shù),得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,對(duì)定義域內(nèi)的任意實(shí)數(shù),f(﹣x)=f(x);奇函數(shù)和偶函數(shù)的定義域必然關(guān)于原點(diǎn)對(duì)稱(chēng),定義域區(qū)間兩個(gè)端點(diǎn)互為相反數(shù).5、B【解析】
先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點(diǎn)取自陰影部分的概率為.又,故.故選B.【點(diǎn)睛】本題考查了幾何概型,定積分的計(jì)算以及幾何意義,屬于中檔題.6、A【解析】
根據(jù)焦點(diǎn)到漸近線(xiàn)的距離,可得,然后根據(jù),可得結(jié)果.【詳解】由題可知:雙曲線(xiàn)的漸近線(xiàn)方程為取右焦點(diǎn),一條漸近線(xiàn)則點(diǎn)到的距離為,由所以,則又所以所以焦距為:故選:A【點(diǎn)睛】本題考查雙曲線(xiàn)漸近線(xiàn)方程,以及之間的關(guān)系,識(shí)記常用的結(jié)論:焦點(diǎn)到漸近線(xiàn)的距離為,屬基礎(chǔ)題.7、B【解析】
分類(lèi)討論,分別求出最大元素為3,4,5,6的三個(gè)元素子集的個(gè)數(shù),即可得解.【詳解】集合含有個(gè)元素的子集共有,所以.在集合中:最大元素為的集合有個(gè);最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.【點(diǎn)睛】此題考查集合相關(guān)的新定義問(wèn)題,其本質(zhì)在于弄清計(jì)數(shù)原理,分類(lèi)討論,分別求解.8、D【解析】
分析:由題意結(jié)合對(duì)數(shù)的性質(zhì),對(duì)數(shù)函數(shù)的單調(diào)性和指數(shù)的性質(zhì)整理計(jì)算即可確定a,b,c的大小關(guān)系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項(xiàng).點(diǎn)睛:對(duì)于指數(shù)冪的大小的比較,我們通常都是運(yùn)用指數(shù)函數(shù)的單調(diào)性,但很多時(shí)候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進(jìn)行比較.這就必須掌握一些特殊方法.在進(jìn)行指數(shù)冪的大小比較時(shí),若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進(jìn)行判斷.對(duì)于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準(zhǔn)確.9、A【解析】
分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設(shè),數(shù)量積轉(zhuǎn)化為關(guān)于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點(diǎn)為O,可知為等腰三角形,而,所以為等邊三角形,。設(shè)=所以當(dāng)時(shí),上式取最小值,選A.點(diǎn)睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時(shí)利用向量共線(xiàn)轉(zhuǎn)化為函數(shù)求最值。10、C【解析】
取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個(gè)頂點(diǎn)都在球O的球面上,的外接圓直徑為,球O的半徑R滿(mǎn)足,所以球O的表面積S=4πR2=,故選:C.【點(diǎn)睛】此題考查三棱錐的外接球半徑與棱長(zhǎng)的關(guān)系,及球的表面積公式,解題時(shí)要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.11、D【解析】
根據(jù)雙曲線(xiàn)的定義可得的邊長(zhǎng)為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線(xiàn)的離心率,解題關(guān)鍵是應(yīng)用雙曲線(xiàn)的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.12、D【解析】
設(shè)出的坐標(biāo)為,依據(jù)題目條件,求出點(diǎn)的軌跡方程,寫(xiě)出點(diǎn)的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結(jié)果.【詳解】設(shè),則∵,∴∴∴為點(diǎn)的軌跡方程∴點(diǎn)的參數(shù)方程為(為參數(shù))則由向量的坐標(biāo)表達(dá)式有:又∵∴故選:D【點(diǎn)睛】考查學(xué)生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉(zhuǎn)換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關(guān)點(diǎn)法;④參數(shù)法;⑤待定系數(shù)法二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由棱長(zhǎng)為的正四面體求出外接球的半徑,進(jìn)而求出正三棱錐的高及側(cè)棱長(zhǎng),可得正三棱錐的三條側(cè)棱兩兩相互垂直,進(jìn)而求出體積與表面積,設(shè)內(nèi)切圓的半徑,由等體積,求出內(nèi)切圓的半徑.【詳解】由題意可知:多面體的外接球即正四面體的外接球作面交于,連接,如圖則,且為外接球的直徑,可得,設(shè)三角形的外接圓的半徑為,則,解得,設(shè)外接球的半徑為,則可得,即,解得,設(shè)正三棱錐的高為,因?yàn)?,所以,所以,而,所以正三棱錐的三條側(cè)棱兩兩相互垂直,所以,設(shè)內(nèi)切球的半徑為,,即解得:.故答案為:.【點(diǎn)睛】本題考查多面體與球的內(nèi)切和外接問(wèn)題,考查轉(zhuǎn)化與化歸思想,考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意借助幾何體的直觀(guān)圖進(jìn)行分析.14、【解析】
根據(jù)切線(xiàn)的斜率為,利用導(dǎo)數(shù)列方程,由此求得切點(diǎn)的坐標(biāo),進(jìn)而求得切線(xiàn)方程,通過(guò)對(duì)比系數(shù)求得的值.【詳解】,則,所以切點(diǎn)為,故切線(xiàn)為,即,故.故答案為:【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求解曲線(xiàn)的切線(xiàn)方程有關(guān)問(wèn)題,屬于基礎(chǔ)題.15、【解析】
先利用余弦定理求出,再用正弦定理求出并把轉(zhuǎn)化為與邊有關(guān)的等式,結(jié)合可求的值.【詳解】因?yàn)?,故,因?yàn)椋?由正弦定理可得三角形外接圓的半徑滿(mǎn)足,所以即.因?yàn)?,解得或(舍?故答案為:.【點(diǎn)睛】本題考查正弦定理、余弦定理在解三角形中的應(yīng)用,注意結(jié)合求解目標(biāo)對(duì)所得的方程組變形整合后整體求解,本題屬于中檔題.16、【解析】
由已知可得?4Sn﹣n(n+3)=0,可得Sn,n=1時(shí),a1=S1=1.當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1.可得:2().利用裂項(xiàng)求和方法即可得出.【詳解】∵⊥,∴?4Sn﹣n(n+3)=0,∴Sn,n=1時(shí),a1=S1=1.當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1.,滿(mǎn)足上式,.∴2().∴數(shù)列{}前2020項(xiàng)和為2(1)=2(1).故答案為:.【點(diǎn)睛】本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)列遞推關(guān)系、裂項(xiàng)求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為“性別與測(cè)評(píng)結(jié)果有關(guān)系”(3)見(jiàn)解析.【解析】
(1)由已知抽取的人中優(yōu)秀人數(shù)為20,這樣結(jié)合已知可得列聯(lián)表;(2)根據(jù)列聯(lián)表計(jì)算,比較后可得;(3)由于性別對(duì)結(jié)果有影響,因此用分層抽樣法.【詳解】解:(1)優(yōu)秀合格總計(jì)男生62228女生141832合計(jì)204060(2)由于,因此在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為“性別與測(cè)評(píng)結(jié)果有關(guān)系”.(3)由(2)可知性別有可能對(duì)是否優(yōu)秀有影響,所以采用分層抽樣按男女生比例抽取一定的學(xué)生,這樣得到的結(jié)果對(duì)學(xué)生在該維度的總體表現(xiàn)情況會(huì)比較符合實(shí)際情況.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn),考查分層抽樣的性質(zhì).考查學(xué)生的數(shù)據(jù)處理能力.屬于中檔題.18、(1);(2);(3)【解析】
(1)依題意,得,,由此能求出橢圓C的方程.(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng),設(shè),,設(shè),由于點(diǎn)在橢圓C上,故,由,知,由此能求出圓T的方程.(3)設(shè),則直線(xiàn)MP的方程為:,令,得,同理:,由此能證明為定值.【詳解】(1)依題意,得,,,故橢圓C的方程為.(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng),設(shè),,設(shè),由于點(diǎn)在橢圓C上,所以,由,則,.由于,故當(dāng)時(shí),的最小值為,所以,故,又點(diǎn)在圓T上,代入圓的方程得到.故圓T的方程為:(3)設(shè),則直線(xiàn)MP的方程為:,令,得,同理:.故又點(diǎn)與點(diǎn)在橢圓上,故,代入上式得:,所以【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)、圓的軌跡方程、直線(xiàn)與橢圓的位置關(guān)系中定值問(wèn)題,考查了學(xué)生的計(jì)算能力,屬于中檔題.19、(1)(2)見(jiàn)解析,【解析】
(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問(wèn)卷調(diào)查的12名學(xué)生中隨機(jī)抽取2人,基本事件總數(shù)為,這兩人來(lái)自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個(gè)小組的學(xué)生中隨機(jī)抽取2人,而甲、丙兩個(gè)小組學(xué)生分別有4人和2人,所以抽取的兩人中是甲組的學(xué)生的人數(shù)的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量的分布列和數(shù)學(xué)期望.【詳解】(1)由題設(shè)易得,問(wèn)卷調(diào)查從四個(gè)小組中抽取的人數(shù)分別為4,3,2,3(人),從參加問(wèn)卷調(diào)查的12名學(xué)生中隨機(jī)抽取兩名的取法共有(種),抽取的兩名學(xué)生來(lái)自同一小組的取法共有(種),所以,抽取的兩名學(xué)生來(lái)自同一個(gè)小組的概率為(2)由(1)知,在參加問(wèn)卷調(diào)查的12名學(xué)生中,來(lái)自甲、丙兩小組的學(xué)生人數(shù)分別為4人、2人,所以,抽取的兩人中是甲組的學(xué)生的人數(shù)的可能取值為0,1,2,因?yàn)樗噪S機(jī)變量的分布列為:012所求的期望為【點(diǎn)睛】此題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,考查分層抽樣、古典概型、排列組合等知識(shí),考查運(yùn)算能力,屬于中檔題.20、(1)(2)填表見(jiàn)解析;不能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為擅長(zhǎng)冰上運(yùn)動(dòng)與性別有關(guān)系【解析】
(1)利用頻率分布直方圖小長(zhǎng)方形的面積和為列方程,解方程求得的值.(2)根據(jù)表格數(shù)據(jù)填寫(xiě)列聯(lián)表,計(jì)算出的值,由此判斷不能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為擅長(zhǎng)冰上運(yùn)動(dòng)與性別有關(guān)系.【詳解】(1)由題意,解得.(2)由頻率分布直方圖可得不擅長(zhǎng)冰上運(yùn)動(dòng)的人數(shù)為.完善列聯(lián)表如下:擅長(zhǎng)不擅長(zhǎng)合計(jì)男性203050女性104050合計(jì)3070100,對(duì)照表格可知,,不能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為擅長(zhǎng)冰上運(yùn)動(dòng)與性別有關(guān)系.【點(diǎn)睛】本小題主要考查根據(jù)頻率分布直方圖計(jì)算小長(zhǎng)方形的高,考查列聯(lián)表獨(dú)立性檢驗(yàn),屬于基礎(chǔ)題.21、(1)見(jiàn)解析,有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)【解析】
(1)根據(jù)題中數(shù)據(jù)得到列聯(lián)表,然后計(jì)算出,與臨界值表中的數(shù)據(jù)對(duì)照后可得結(jié)論;(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年KS258培訓(xùn)教程:深入淺出讓你輕松掌握
- 2024年健康監(jiān)測(cè):聲音監(jiān)測(cè)在《聽(tīng)聽(tīng)聲音》課件中的應(yīng)用
- 光切三維重建技術(shù)的應(yīng)用與前景
- 容量評(píng)價(jià)及容量反應(yīng)性
- 學(xué)校七年級(jí)組工作計(jì)劃范文
- 高考數(shù)學(xué)十大考場(chǎng)應(yīng)試技巧
- BIM在2024年制造業(yè)數(shù)字化轉(zhuǎn)型中的角色
- 整式的除法之多項(xiàng)式除以單項(xiàng)式教案
- Braun吻合在胃大部切除畢Ⅱ式吻合術(shù)中的應(yīng)用體會(huì)
- 2024-2025學(xué)年新教材高中地理第3單元從圈層作用看地貌與土壤單元活動(dòng)學(xué)用地形圖探究地貌特征學(xué)案魯教版必修第一冊(cè)
- 成語(yǔ)故事課件一諾千金
- 物業(yè)公司環(huán)境因素清單
- 國(guó)內(nèi)旅游出團(tuán)通知書(shū)(新版)
- 趕工措施費(fèi)申請(qǐng)報(bào)告
- 訂單協(xié)調(diào)管理流程
- 全橋逆變電路濾波電路設(shè)計(jì)步驟
- 蒲公英總黃酮的提取及其抑菌性能
- 4gl語(yǔ)言開(kāi)發(fā)原則及規(guī)范--簡(jiǎn)化版
- 工程量確認(rèn)單樣本(管線(xiàn))
- 區(qū)最新關(guān)于生活垃圾分類(lèi)工作推進(jìn)會(huì)上的講話(huà)稿
- 除塵器安裝專(zhuān)業(yè)監(jiān)理實(shí)施細(xì)則
評(píng)論
0/150
提交評(píng)論