2025屆貴州省六盤水市盤縣第四中學(xué)數(shù)學(xué)高二上期末達標檢測模擬試題含解析_第1頁
2025屆貴州省六盤水市盤縣第四中學(xué)數(shù)學(xué)高二上期末達標檢測模擬試題含解析_第2頁
2025屆貴州省六盤水市盤縣第四中學(xué)數(shù)學(xué)高二上期末達標檢測模擬試題含解析_第3頁
2025屆貴州省六盤水市盤縣第四中學(xué)數(shù)學(xué)高二上期末達標檢測模擬試題含解析_第4頁
2025屆貴州省六盤水市盤縣第四中學(xué)數(shù)學(xué)高二上期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆貴州省六盤水市盤縣第四中學(xué)數(shù)學(xué)高二上期末達標檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過拋物線的焦點作直線l,交拋物線與A、B兩點,若線段中點的縱坐標為3,則等于()A.10 B.8C.6 D.42.“冰雹猜想”數(shù)列滿足:,,若,則()A.4 B.3C.2 D.13.橢圓的離心率為()A B.C. D.4.天文學(xué)家卡西尼在研究土星及其衛(wèi)星的運行規(guī)律時發(fā)現(xiàn):同一平面內(nèi)到兩個定點的距離之積為常數(shù)的點的軌跡是卡西尼卵形線.在平面直角坐標系中,設(shè)定點為,,,點O為坐標原點,動點滿足(且為常數(shù)),化簡得曲線E:.當,時,關(guān)于曲線E有下列四個命題:①曲線E既是軸對稱圖形,又是中心對稱圖形;②的最大值為;③的最小值為;④面積的最大值為.其中,正確命題的個數(shù)為()A.1個 B.2個C.3個 D.4個5.新型冠狀病毒(2019-NCoV)因2019年武漢病毒性肺炎病例而被發(fā)現(xiàn),2020年1月12日被世界衛(wèi)生組織命名,為考察某種藥物預(yù)防該疾病的效果,進行動物試驗,得到如下列聯(lián)表:患病未患病總計服用藥104555未服藥203050總計3075105下列說法正確的是()參考數(shù)據(jù):,0.050.013.8416.635A.有95%的把握認為藥物有效B.有95%的把握認為藥物無效C.在犯錯誤的概率不超過0.05的前提下認為藥物無效D.在犯錯誤的概率不超過0.01的前提下認為藥物有效6.設(shè)為數(shù)列的前n項和,,且滿足,若,則()A.2 B.3C.4 D.57.已知點在平面內(nèi),是平面的一個法向量,則下列各點在平面內(nèi)的是()A. B.C. D.8.橢圓中以點為中點的弦所在直線斜率為()A. B.C. D.9.在正方體中,AC與BD的交點為M.設(shè)則下列向量與相等的向量是()A. B.C. D.10.若函數(shù)在定義域上單調(diào)遞增,則實數(shù)的取值范圍為()A. B.C. D.11.如圖是正方體的平面展開圖,在這個正方體中①與平行;②與是異面直線;③與成60°角;④與是異面直線以上四個結(jié)論中,正確結(jié)論的序號是A.①②③ B.②④C.③④ D.②③④12.甲烷是一種有機化合物,分子式為,其在自然界中分布很廣,是天然氣、沼氣的主要成分.如圖所示的為甲烷的分子結(jié)構(gòu)模型,已知任意兩個氫原子之間的距離(H-H鍵長)相等,碳原子到四個氫原子的距離(C-H鍵長)均相等,任意兩個H-C-H鍵之間的夾角為(鍵角)均相等,且它的余弦值為,即,若,則以這四個氫原子為頂點的四面體的體積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若向量,,,且向量,,共面,則______14.兩條平行直線與的距離是__________15.設(shè)函數(shù)(1)求的最小正周期和的最大值;(2)已知銳角的內(nèi)角A,B,C對應(yīng)的邊分別為a,b,c,若,且,求的面積.16.九連環(huán)是中國的一種古老智力游對,它用九個圓環(huán)相連成串,環(huán)環(huán)相扣,以解開為勝,趣味無窮.中國的末代皇帝溥儀(1906-1967)也曾有一個精美的由九個翡翠繯相連的銀制的九連環(huán)(如圖).現(xiàn)假設(shè)有個圓環(huán),用表示按照某種規(guī)則解下個圓環(huán)所需的銀和翠玉制九連環(huán)最少移動次數(shù),且數(shù)列滿足,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,曲線的參數(shù)方程為,(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)已知,曲線與曲線相交于A,B兩點,求.18.(12分)甲、乙等6個班級參加學(xué)校組織廣播操比賽,若采用抽簽的方式隨機確定各班級的出場順序(序號為1,2,…,6),求:(1)甲、乙兩班級的出場序號中至少有一個為奇數(shù)的概率;(2)甲、乙兩班級之間的演出班級(不含甲乙)個數(shù)X的分布列與期望19.(12分)圓心為的圓經(jīng)過點,,且圓心在上,(1)求圓的標準方程;(2)過點作直線交圓于且,求直線的方程.20.(12分)在矩形中,是的中點,是上,,且,如圖,將沿折起至:(1)指出二面角的平面角,并說明理由;(2)若,求證:平面平面;(3)若是線段的中點,求證:直線平面;21.(12分)某市對新形勢下的中考改革工作進行了全面的部署安排.中考錄取科目設(shè)置分為固定賦分科目和非固定賦分科目,固定賦分科目(語文、數(shù)學(xué)、英語、物理、體育與健康)按卷面分計算;非固定賦分科目(化學(xué)、生物、道德與法治、歷史、地理)按學(xué)生在該學(xué)科中的排名進行等級賦分,即根據(jù)改革方案,將每門等級考試科目中考生的原始成績從高到低分為A,,,,,,,共個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為,,,,,,,.等級考試科目成績計入考生總成績時,將A至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到,,,,,,,八個分數(shù)區(qū)間,得到考生的等級成績.該市學(xué)生的中考化學(xué)原始成績制成頻率分布直方圖如圖所示:(1)求圖中的值;(2)估計該市學(xué)生中考化學(xué)原始成績不少于多少分才能達到等級及以上(含等級)?(3)由于中考改革后學(xué)生各科原始成績不再返回學(xué)校,只告知各校參考學(xué)生的各科平均成績及方差.已知某校初三共有名學(xué)生參加中考,為了估計該校學(xué)生的化學(xué)原始成績達到等級及以上(含等級)的人數(shù),將該校學(xué)生的化學(xué)原始成績看作服從正態(tài)分布,并用這名學(xué)生的化學(xué)平均成績作為的估計值,用這名學(xué)生化學(xué)成績的方差作為的估計值,計算人數(shù)(結(jié)果保留整數(shù))附:,,.22.(10分)在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2(1)求四棱錐P﹣ABCD的體積V;(2)若F為PC的中點,求證PC⊥平面AEF

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)拋物線的定義求解【詳解】拋物線的焦點為,準線方程為,設(shè),則,所以,故選:B2、A【解析】根據(jù)題意分別假設(shè)為奇數(shù)、偶數(shù)的情況,求出對應(yīng)的即可.【詳解】由題意知,因為,若為奇數(shù)時,,與為奇數(shù)矛盾,不符合題意;若為偶數(shù)時,,可得,符合題意.不符合故選:A3、D【解析】根據(jù)橢圓方程先寫出標準方程,然后根據(jù)標準方程寫出便可得到離心率.【詳解】解:由題意得:,,故選:D4、D【解析】①:根據(jù)軸對稱圖形、中心對稱圖形的方程特征進行判斷即可;②:結(jié)合兩點間距離公式、曲線方程特征進行判斷即可;③:根據(jù)卡西尼卵形線的定義,結(jié)合基本不等式進行判斷即可;④:根據(jù)方程特征,結(jié)合三角形面積公式進行判斷即可.【詳解】當,時,.①:因為以代方程不變,以代方程不變,同時代,以代方程不變,所以曲線E既是軸對稱圖形,又是中心對稱圖形,因此本命題正確;②:由,所以有,所以,當時成立,因此本命題正確;③:因為,所以,當且僅當時,取等號,因此本命題正確;④:,因為,所以,的面積為,因此本命題正確,故選:D【點睛】關(guān)鍵點睛:利用方程特征進行求解判斷是解題的關(guān)鍵.5、A【解析】根據(jù)列聯(lián)表計算,對照臨界值即可得出結(jié)論【詳解】根據(jù)列聯(lián)表,計算,由臨界值表可知,有95%的把握認為藥物有效,A正確故選:A6、B【解析】由已知條件可得數(shù)列為首項為2,公差為2的等差數(shù)列,然后根據(jù)結(jié)合等差數(shù)列的求和公式可求得答案【詳解】在等式中,令,可得,所以數(shù)列為首項為2,公差為2的等差數(shù)列,因為,所以,化簡得,,解得或(舍去),故選:B7、B【解析】設(shè)平面內(nèi)的一點為,由可得,進而可得滿足的方程,將選項代入檢驗即可得正確選項.【詳解】設(shè)平面內(nèi)的一點為(不與點重合),則,因為是平面的一個法向量,所以,所以,即,對于A:,故選項A不正確;對于B:,故選項B正確;對于C:,故選項C不正確;對于D:,故選項D不正確,故選:B.8、A【解析】先設(shè)出弦的兩端點的坐標,分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率【詳解】設(shè)弦的兩端點為,,代入橢圓得兩式相減得,即,即,即,即,弦所在的直線的斜率為,故選:A9、C【解析】根據(jù)空間向量的運算法則,推出的向量表示,可得答案.【詳解】,故選:C.10、D【解析】函數(shù)在定義域上單調(diào)遞增等價于在上恒成立,即在上恒成立,然后易得,最后求出范圍即可.【詳解】函數(shù)的定義域為,,在定義域上單調(diào)遞增等價于在上恒成立,即在上恒成立,即在上恒成立,分離參數(shù)得,所以,即.【點睛】方法點睛:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍的通解:若在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立;若在區(qū)間上單調(diào)遞減,則在區(qū)間上恒成立;然后再利用分離參數(shù)求得參數(shù)的取值范圍即可.11、C【解析】根據(jù)平面展開圖可得原正方體,根據(jù)各點的分布逐項判斷可得正確的選項.【詳解】由平面展開圖可得原正方體如圖所示:由圖可得:為異面直線,與不是異面直線,是異面直線,故①②錯誤,④正確.連接,則為等邊三角形,而,故或其補角為與所成的角,因為,故與所成的角為,故③正確.綜上,正確命題的序號為:③④.故選:C.【點睛】本題考查正方體的平面展開圖,注意展開圖中的點與正方體中的頂點的對應(yīng)關(guān)系,本題屬于容易題.12、A【解析】利用余弦定理求得,計算出正四面體的高,從而計算出正四面體的體積.【詳解】設(shè),則由余弦定理知:,解得,故該正四面體的棱長均為由正弦定理可知:該正四面體底面外接圓的半徑,高故該正四面體的體積為故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由向量共面的性質(zhì)列出方程組求解即可.【詳解】因為,,共面,所以存在實數(shù)x,y,使得,得,解得∴故答案為:14、5【解析】根據(jù)兩平行直線,可求得a值,根據(jù)兩平行線間距離公式,即可得答案.【詳解】因為兩平行直線與,所以,解得,所以兩平行線的距離.故答案為:515、(1)的最小正周期為,的最大值為1(2)【解析】(1)直接根據(jù)的表達式和正弦函數(shù)的性質(zhì)可得到的最小正周期和最大值;(2)先根據(jù)求得角的大小為,然后在中利用余弦定理求得,最后根據(jù)三角形的面積公式即可【小問1詳解】已知則的最小正周期為:則的最大值為:【小問2詳解】由可得:()或()又為銳角,則可得:.在中,由余弦定理可得:,即又,解得:則的面積為:16、684【解析】利用累加法可求得的值.【詳解】當且時,,所以,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)2【解析】(1)消參數(shù)即可得曲線的普通方程,利用極坐標方程與直角坐標方程之間的轉(zhuǎn)化關(guān)系式,從而曲線的直角坐標方程;(2)將的參數(shù)方程代入的直角坐標方程,得關(guān)于的一元二次方程,由韋達定理得,即可得的值.【小問1詳解】由,消去參數(shù),得,即,所以曲線的普通方程為.由,得,即,所以曲線的直角坐標方程為【小問2詳解】將代入,整理得,則,令方程的兩個根為由韋達定理得,所以.18、(1)(2)X01234p期望為.【解析】(1)求出甲、乙兩班級的出場序號中均為偶數(shù)的概率,進而求出答案;(2)求出X的可能取值及相應(yīng)的概率,寫出分布列,求出期望值.【小問1詳解】由題意得:甲、乙兩班級的出場序號中均為偶數(shù)的概率為,故甲、乙兩班級的出場序號中至少有一個為奇數(shù)的概率;【小問2詳解】X的可能取值為0,1,2,3,4,,,,故分布列為:X01234p數(shù)學(xué)期望為19、(1);(2)或.【解析】(1)求出線段的垂直平分線方程,求出此直線與已知直線的交點坐標即為圓心坐標,再求得半徑后可得圓的標準方程;(2)檢驗直線斜率不存在時是否滿足題意,在斜率存在時設(shè)方程為,求得圓心到直線的距離,由勾股定理得弦長,由弦長為8得參數(shù),得直線方程【詳解】(1)由已知,中點坐標為,垂直平分線方程為則由解得,所以圓心,因此半徑所以圓的標準方程(2)由可得圓心到直線的距離當直線斜率不存在時,其方程為,當直線斜率存在時,設(shè)其方程為,則,解得,此時其方程為,所以直線方程為或.【點睛】方法點睛:本題考查求圓的標準方程,考查直線與圓相交弦長.求弦長方法是幾何法:即求出圓心到弦所在直線距離,由勾股定理求得弦長.求直線方程時注意檢驗直線斜率不存在的情形20、(1)為二面角的平面角,理由見解析(2)證明見解析(3)證明見解析【解析】(1)根據(jù),結(jié)合二面角定義得到答案.(2)證明平面得到,得到平面,得到證明.(3)延長,交于點,連接,證明即可.【小問1詳解】連接,則,,故為二面角的平面角.【小問2詳解】,,,故平面,平面,故,又,,故平面,平面,故平面平面.【小問3詳解】延長,交于點,連接,易知,故故是的中點,是線段的中點,故,平面,且平面,故直線平面.21、(1)(2)85(3)23【解析】(1)根據(jù)所有矩形面積之和等于1可得;(2)先根據(jù)矩形面積之和判斷達到等級的最低分數(shù)為x所在區(qū)間,然后根據(jù)矩形面積之和等于0.9可得;(3)由題知,所以由可得.【小問1詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論