2021年湖北省武漢市學(xué)典中考數(shù)學(xué)模擬試卷(四)(附答案詳解)_第1頁
2021年湖北省武漢市學(xué)典中考數(shù)學(xué)模擬試卷(四)(附答案詳解)_第2頁
2021年湖北省武漢市學(xué)典中考數(shù)學(xué)模擬試卷(四)(附答案詳解)_第3頁
2021年湖北省武漢市學(xué)典中考數(shù)學(xué)模擬試卷(四)(附答案詳解)_第4頁
2021年湖北省武漢市學(xué)典中考數(shù)學(xué)模擬試卷(四)(附答案詳解)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021年湖北省武漢市名校學(xué)典中考數(shù)學(xué)模擬試卷(四)

一、選擇題(本大題共10小題,共30.0分)

1.(2021?湖北省武漢市?模擬題)-|的絕對值等于()

A—B.|C,-1D.|

2.(2021?湖北省武漢市?模擬題)在下列事件中,是隨機事件的是()

A.購買一張彩票,中獎

B.明天太陽從東方升起

C.通常加熱到100汽時,水沸騰

D.任意畫一個三角形,其內(nèi)角和為360。

3.(2020?浙江省寧波市?期末考試)下列四個圖形中,是中心對稱圖形的是()

AB

OOcO。咨

4.(2021?湖北省武漢市?模擬題)計算(-鏟尸的結(jié)果是()

A.x7B.-x7C.-x12D.x12

5.(2021?湖北省武漢市?模擬題)如圖是由4個相同的小正方體組成的幾

何體,從上往下看到的平面圖形為()\\\^\

A,ft]

BE

c田

D-EP

6.(2021?湖北省武漢市?模擬題)某居委會組織兩個檢查組.分別對“居民居家安全”和

“居民出行安全”的情況進行抽查,若這兩個檢查組在轄區(qū)內(nèi)的某三個小區(qū)中各自

隨機抽取一個小區(qū)進行檢查.則他們恰好抽到同一個小區(qū)的概率是()

A*B.gC.iD.|

7.(2021?湖北省武漢市?模擬題)若點4(xi,-5),B(X2,2),4右,5)都在反比例函數(shù)y

-+:m+5的圖象上,則X1,*2,右的大小關(guān)系是()

乂xX

A.X]<%2<3B.X2<3<1c.%1<x3<x2D.x3<xx<x2

8.(2021?湖北省武漢市?模擬題)如圖,大拇指與小拇指盡量張開時,兩指尖的距離稱為

指距.根據(jù)最近人體構(gòu)造學(xué)的研究成果表明,一般情況下人的身高h與指距d成函數(shù)

關(guān)系.下表是測得的指距與身高的一組數(shù)據(jù):

指距d(cm)20212223

身高九(cm)160169178187

根據(jù)上表解決下面這個實際問題:著名網(wǎng)球運動員李娜的身高是172cg她的指距

約為()

A.22.4cmB.21.3cmC.27.5cmD.24.1cm

9.(2021?湖北省武漢市?模擬題)如圖,四邊形4BC。內(nèi)接于。。,AB為直徑,4。=CD,

過點。作DEJ.AB于點E.連接AC交£>E于點F.若cos4CBA=|,£尸=3.則48的長

為()

A.10B.12C.16D.20

10.(2021?湖北省武漢市?模擬題)將雙曲線丁=三句右平移1個單位長度,再向下平移2

個單位長度,得到的新雙曲線與直線y=kx-2-k(k>0)相交于兩點,其中一個

點的橫坐標(biāo)為。,另一個點的縱坐標(biāo)為江則(a-l)(b+2)的值為()

A.-4B.-3C.4D.9

二、填空題(本大題共6小題,共18.0分)

11.(2018?上海市市轄區(qū)?模擬題滸算:合=.

12.(2021?湖北省武漢市?模擬題)如圖是根據(jù)武漢市某天七個整點時的氣溫繪制成的統(tǒng)

計圖,這七個整點時氣溫的中位數(shù)和眾數(shù)分別是.

第2頁,共27頁

14.(2021.湖北省武漢市.模擬題)某市為了加快5G網(wǎng)格信號覆蓋,在市區(qū)附近小山頂架

設(shè)信號發(fā)射塔,如圖所示.小軍為了知道發(fā)射塔的高度,從地面上的一點A測得發(fā)

射塔頂端尸點的仰角是45。,向前走60米到達B點測得P點的仰角是60。,測得發(fā)

射塔底部。點的仰角是30。,則BC米;信號發(fā)射塔尸。的高度為米

.(結(jié)果精確到0.1米,V3=1,732)

15.(2021?湖北省武漢市?模擬題)如圖,拋物線丫=。刀2+故+武(1>0)的頂點為。,與

x軸交點4,B的橫坐標(biāo)分別為-1,3,與y軸負半軸交于點C.下面五個結(jié)論:①2a+

b=0;②匕2_4-ac<2a;③對任意實數(shù)尤,-a/-bx<a;④W(x2,y2)

是拋物線上兩點Qi<%2)>若+到>2,則y1<、2;⑤使△4BC為等腰三角形

三、解答題(本大題共8小題,共72.0分)

x-2(x—2)<0(T)

17.(2021.湖北省武漢市.模擬題)解下列不等式組:i+2x]小并在數(shù)軸上表示

>-X+1(2)

解集.

(I)解不等式①,得;

(n)解不等式②,得;

(衛(wèi))把不等式①和②的解集在數(shù)軸上表示出來;

1IIII]]II114

-5-4-3-2-1012345x

(W)原不等式組的解集為.

18.(2019?湖北省武漢市?期中考試)如圖,弘8c。的對角線AC,8。相交于點O,E,F

相交于OC、0A的中點.求證:BE=DF.

第4頁,共27頁

19.(2021?湖北省武漢市?模擬題)今年4月份,某校九年級學(xué)生

參加了市中考體育考試,為了了解該校九年級(1)班同學(xué)的

中考體育情況,對全班學(xué)生的中考體育成績進行了統(tǒng)計,

并繪制以下不完整的頻數(shù)分布表和扇形統(tǒng)計圖,根據(jù)圖表

中的信息解答下列問題:

分組分數(shù)段(分)頻數(shù)

A5<%<102

B10<%<155

C15<x<2015

D20<x<25m

E25<x<3010

(1)求全班學(xué)生人數(shù)和m的值;

(2)直接寫出該班學(xué)生的中考體育成績的中位數(shù)落在哪個分數(shù)段;

(3)該班中考體育成績滿分共有5人,其中男生3人,女生2人,現(xiàn)需從這5人中

隨機選取2人到八年級進行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好

選到一男一女的概率.

20.(2021.湖北省武漢市.模擬題)如圖,已知等腰△4BC,請在圖上的網(wǎng)格中用無刻度的

直尺按要求畫圖.

(2)如圖2,在線段AC上找一點P,使又孔「=|;

(3)如圖3,0點是4c與網(wǎng)格線的交點,在線段AB上找一點Q,使得tan/HOQ=|.

21.(2021?湖北省武漢市?模擬題)如圖,在矩形ABCD中,AB是半圓。的直徑,。尸為。。

的切線,連接B尸交CD于E點.

(1)求證:E為CD中點、;

第6頁,共27頁

22.(2021.湖北省武漢市.模擬題)2021年2月25日全國脫貧攻堅總結(jié)表彰大會在人民大

會堂隆重舉行,毛相林被授予《全國脫貧攻堅楷模》稱號.他帶領(lǐng)村民發(fā)展柑橘、

桃樹、西瓜三大產(chǎn)業(yè),若柑橘的種植成本為10元/斤,售價不低于15元/斤,不高于

30元/斤.

(1)每日柑橘銷售量y(斤)與售價%(元/斤)之間滿足如圖函數(shù)關(guān)系式.求y與x之間的

函數(shù)關(guān)系式;

(2)若每天銷售利潤率在60%?80%,求每日銷售的最大利潤;

(3)毛相林帶領(lǐng)科技隊幫助果農(nóng)降低種植成本,成本每斤減少〃元(0<aW5),已

知每日最大利潤為1458元,求。的值.

240'

nl------1------1------i-----:——?------>

510152025x

23.(2021?湖北省武漢市?模擬題)(1)問題背景:如圖1,已知矩形ABC。,E為線段AO

上一點,連接BE,以線段BE為對稱軸,將AABE翻折;A點的對應(yīng)點為F點.若尸

點正好落在線段CQ上,求證:AEDFfFCB.

(2)嘗試應(yīng)用:如圖2,已知直角梯形ABC£>,ZB=ZC=AAED=90°,2^ADE+

“DE=18?!?過點E作若EH=2,AD=5,求CE的長.

(3)拓展創(chuàng)新:如圖3,已知矩形A8CQ,AB=12,AD=9,E在線段A。上運動,

連接3E,以線段BE為對稱軸,將aABE翻折,A點的對稱點為P點,連接C尸并

在線段CP上取一點7,使得PT=2CT,連接07,直接寫出。T的最小值.

24.(2021?湖北省武漢市?模擬題)如圖,拋物線丫=刀2+3萬一數(shù)-3以。>0)與》軸交

于A,8兩點(A在8的左邊),與y軸交于C點.

(1)請直接寫出點A,B,C的坐標(biāo):4(,),8(,),

C(,);

(2)如圖1,若a=|,P點在拋物線上,且位于4C下方,乙PAC=4BCO,求P點

橫坐標(biāo);

(3)如圖2,平移拋物線,使得其頂點和原點重合,A點不變,過點A作直線與拋物

線交于M,N兩點,。是拋物線上一點,且動直線的解析式為:y=-6x+b,

連接直線QM問:直線QN是否經(jīng)過定點,若經(jīng)過定點,請說明理由并求出定點

坐標(biāo):若不經(jīng)過定點,請說明理由.

第8頁,共27頁

圖1圖2

答案和解析

1.【答案】B

【知識點】絕對值

【解析】解:-|的絕對值等于去

故選:B.

根據(jù)負數(shù)的絕對值是它的相反數(shù)解答即可.

本題考查了絕對值,掌握絕對值的性質(zhì)是解答本題的關(guān)鍵.

2.【答案】A

【知識點】三角形內(nèi)角和定理、隨機事件

【解析】解:人購買一張彩票,中獎,是隨機事件;

8、明天太陽從東方升起,是必然事件;

C、通常加熱到10(TC時,水沸騰,是必然事件;

。、任意畫一個三角形,其內(nèi)角和為360。,是不可能事件;

故選:4

根據(jù)事件發(fā)生的可能性大小判斷即可.

本題考查的是必然事件、不可能事件、隨機事件的概念,必然事件指在一定條件下,一

定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機

事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.

3.【答案】B

【知識點】中心對稱圖形

【解析】解:人不是中心對稱圖形,故本選項不合題意;

8、是中心對稱圖形,故本選項符合題意;

C、不是中心對稱圖形,故本選項不合題意;

。、不是中心對稱圖形,故本選項不合題意.

故選:B.

根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.

本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原

圖重合.

第10頁,共27頁

4.【答案】C

【知識點】基的乘方與積的乘方

【解析】解:(―X4)3=—x4x3=—X12.

故選:C.

幕的乘方,底數(shù)不變,指數(shù)相乘,據(jù)此計算即可.

本題考查了事的乘方,掌握累的運算法則是解答本題的關(guān)鍵.

5.【答案】B

【知識點】簡單組合體的三視圖

【解析】解:從上面看,底層右邊是一個小正方形,上層是兩個小正方形,右齊.

故選:B.

找到從上面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在主視圖中.

本題考查了三視圖的知識,俯視圖是從物體的上面看得到的視圖.

6.【答案】A

[知識點】用列舉法求概率(列表法與樹狀圖法)

【解析】解:將三個小區(qū)分別記為A、B、C,根據(jù)題意列表如下:

ABc

A(44)(BM)(CM)

B(4B)(B,B)(C,B)

C(AC)(B,C)(c,c)

由表可知,共有9種等可能結(jié)果,其中他們恰好抽到同一個小區(qū)的有3種情況,

所以他們恰好抽到同一個小區(qū)的概率為|=

故選:A.

將三個小區(qū)分別記為A、8、C,列舉出所有等情況數(shù)和他們恰好抽到同一個小區(qū)的情況

數(shù),然后根據(jù)概率公式即可得出答案.

此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)

之比.

7.【答案】C

【知識點】反比例函數(shù)圖象上點的坐標(biāo)特征

【解析】解:?.?反比例函數(shù)丫=必產(chǎn)中,k=m2+3m+5=(m+|)2+^>0,

二函數(shù)圖象的兩個分支分別位于一、三象限,且在每一象限內(nèi),y隨x的增大而減小.

v—5<0<2<5,

:?B、C兩點在第一象限,A點在第三象限,

??

?X1<x3<x2-

故選:c.

先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限,再根據(jù)反比例函數(shù)的性質(zhì)即可

得出結(jié)論.

本題考查的是反比例函數(shù)圖象上點的坐標(biāo)特點,熟知反比例函數(shù)圖象上各點的坐標(biāo)一定

適合此函數(shù)的解析式是解答此題的關(guān)鍵.

8.【答案】B

【知識點】一次函數(shù)的應(yīng)用

【解析】解:設(shè)這個一次函數(shù)的解析式是:y=kx+b(kRO),

060=20/c+b

1169=21k+b'

解得6:葭,

:.y=9x—20,

當(dāng)y=172時,9%-20=172,

解得工?21.3,

故她的指距約為21.3cm.

故選:B.

設(shè)這個一次函數(shù)的解析式為y=kx+b(kK0),利用待定系數(shù)法求出一次函數(shù)的解析式,

再把y=172代入即可求出答案.

本題主要考查了一次函數(shù)的應(yīng)用,在解題時要能根據(jù)題意求出一次函數(shù)的解析式是本題

的關(guān)鍵.

9.【答案】D

【知識點】勾股定理、圓內(nèi)接四邊形的性質(zhì)、解直角三角形、垂徑定理、圓周角定理、

相似三角形的判定與性質(zhì)、圓心角、弧、弦的關(guān)系

第12頁,共27頁

【解析】解:連接瓦),

vDE1AB,

??.Z.AED=(BED=90°,4ABD+乙BDE=90°,

???A8為直徑,

???乙ADB=乙ACB=90°,

???Z.EFA=Z.CBAy

vcosZ.CBA=;,EF=3,

EF

???AF=------=5,

COSZ.CBA

:.AE=4,

?:AD=CD,

Z-DAC=Z-DCAf

而乙DCA=Z.ABD,

:.Z.DAC=乙ABD,

ifijZ-ADE4-乙BDE=90°,

???乙ABD=Z-ADE,

:.乙ADE=Z.DAC,

???DF=AF=5,

???DE=5+3=8,

vZ-ADE=乙DBE,Z-AED=乙BED,

」.△ADEsxDBE,

ADE:BE=AE:DE,即8:BE=4:8,

???BE=16,

???48=4+16=20.

故選:D.

連接3。,先證明NE凡4=乙。84根據(jù)余弦計算出AF,利用圓周角定理證明乙4注=

ND4c得到。尸=”,再根據(jù)勾股定理算出AE,證明△4DE-D8E,利用相似比得到

BE,進而算出48的長.

本題主要考查了圓周角定理和相似三角形的判定與性質(zhì),正確理解和使用圓周角和弦之

間的關(guān)系是解題的關(guān)鍵.

10.【答案】B

【知識點】一次函數(shù)與反比例函數(shù)綜合

【解析】解:,一次函數(shù)y=kx-2-k(k>0),

二當(dāng)x=1時,y=-2,

???一次函數(shù)的圖象過定點P(l,-2),

???P(L-2)恰好是原點(0,0)向右平移1個單位長度,再向下平移平移2個單位長度得到

的,

???將雙曲線'=:向右平移I個單位長度,再向下平移2個單位長度,得到的新雙曲線與

直線y=fcx-2-fc(fc>0)相交于兩點,

二在平移前是關(guān)于原點對稱的,平移前,這兩個點的坐標(biāo)分別為(a-L27),(總,b+2),

a—1u+z

??CL—Yk=——3—

b+2

A(a-1)(6+2)=-3,

故選:B.

由于一次函數(shù)y=kx—2—k過定點P(l,—2),P(l,—2)恰好是原點(0,0)向右平移1個單

位長度,再向下平移平移2個單位長度得到的,雙曲線y向右平移1個單位長度,

再向下平移2個單位長度,得到的新雙曲線與直線y=kx-2-k(k>0)相交于兩點,

在平移之前是關(guān)于原點對稱的,表示出這兩點坐標(biāo),根據(jù)中心對稱兩點坐標(biāo)之間的關(guān)系

求出答案.

本題考查一次函數(shù)、反比例函數(shù)圖象上點的坐標(biāo)特征,理解平移之前,相應(yīng)的兩點關(guān)于

原點對稱是解決問題的關(guān)鍵.

11.【答案】V2+1

【知識點】分母有理化

【解析】

【分析】

主要考查二次根式的有理化.根據(jù)二次根式的乘除法法則進行二次根式有理化.

根據(jù)近-1的有理化因式為立+1,進行計算即可.

【解答】

庫式=衣+]

解:坊、八一(V2-1)(V2+1)'

=V2+1,

故答案為a+1.

第14頁,共27頁

12.【答案】26,22

【知識點】中位數(shù)、折線統(tǒng)計圖、眾數(shù)

【解析】解:七個整點時數(shù)據(jù)為:22,22,23,26,28,30,31.

所以中位數(shù)為26,眾數(shù)為22,

故答案為:26,22.

根據(jù)中位數(shù),眾數(shù)的定義進行解答即可.

本題考查折線統(tǒng)計圖,中位數(shù),眾數(shù)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中

考??碱}型.

13.【答案】無解

【知識點】分式方程的一般解法

【解析】解:所以方程兩邊同乘得

尤(x+1)-(%+l)(x-1)=2,

整理解得x=L

將x=1代入(x+l)(x—1)=0.

所以X=1是增根,原方程無解.

由/-1=(X+1)(%-1),可得方程最簡公分母為(X+l)(x-1).去分母,轉(zhuǎn)化為整式

方程求解.結(jié)果要檢驗.

解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程.具體方法是方程兩邊同時乘以最

簡公分母,在此過程中有可能會產(chǎn)生增根,增根是轉(zhuǎn)化后的整式的根,不是原方程的根,

因此要注意求解后進行檢驗.

14.【答案】約81約94.6

【知識點】解直角三角形的應(yīng)用

【解析】解:設(shè)PC為x米,

在Rt△APC中,

-??乙PAC=45°,

???LAPC=45°,

■1?Z.PAC=Z.APC,

???AC=PC=x,

在Rt△BPC中,

???乙PBC=60°,

??.乙BPC=90°-Z,PBC=30°,

vtanzBPC=*,

BC=PC-tan300=—x,

3

-AB=AC-BC=60,

則x——%=60?

3

解得:%=90+30V

:.AC=PC=90+30百,

???BC=AC-AB=30V3+30=81(米),

在RtABCQ中,乙CBQ=30。,tan“BQ=整,

BC

QC=BC-tan30°=^BC=y(30V3+30)=30+10國,

???PQ=PC-QC=90+30V3-(30+1073)=60+20V3?94.6(米).

答:BC約為81米,信號發(fā)射塔PQ的高度約是94.6米.

故答案為約81,約94.6.

設(shè)PC=x米,在Rt^aPC和Rt^BPC中,根據(jù)三角函數(shù)利用x表示出4c和BC,根據(jù)

AB=AC-BC即可列出方程求得x的值,再在Rt△BQC中利用三角函數(shù)求得QC的長,

即可求出PQ的長度.

本題主要考查了解直角三角形的應(yīng)用-仰角俯角的問題,正確求得PC的長度是關(guān)鍵.

15?【答案】①③④

【知識點】二次函數(shù)與一元二次方程、二次函數(shù)圖象上點的坐標(biāo)特征、二次函數(shù)圖象與

系數(shù)的關(guān)系

【解析】解:①?.?拋物線、=。/+"+/£1>0)與苫軸交于71(—1,0)、5(3,0),

???2Q+b=0.

故①正確.

②:由①分析知:一3=2,2=—3,

???b=-2a,c=—3a,

???b2-4ac=(-2a)2—4a(—3a)=16a2,

?,?若爐—4ac<2a,BP16a2<2a,

第16頁,共27頁

根據(jù)題目已有條件,無法推斷出a<《,

O

:,②無法定論.

③??,對于任意實數(shù)x,-ax2-bx<Q成立,

即對于任意實數(shù)x,-ax2—bx-a<0成立.

令g=—ax2—bx—a(—aW0).

va>0,

:.-CLV0,

,關(guān)于實數(shù)X的二次函數(shù)g=—這2一6%一a圖像開口向下.

22

若對于任意x,g=-ax-bx-a<0f故需判斷4=(-h)-4?(-Q)?(-a)與0的數(shù)

量關(guān)系.

,**b——*2a,c=3a,

???△=(2a)2—4a2=o,

對于任意實數(shù)x,g<0.

故③正確.

④由題意知:%=axl+bxr+c,y2=axj+bx2+c,

磯/+

■■yi-y2=X2)(X1-x2)+b(X1-X2).

vb=-2a,

???yi-y2=a(xj+%2)(%i-x2)-2aQi-x2)=a(xx-x2)(x1+x2-2).

a>0>xt<x2>x1+x2>2,

-x2<0,+x2—2>0,

x

???a(xx-x2)(i+x2—2)<0,

???yi-y2<o.

???yi<yi-

故④正確.

⑤:經(jīng)分析,AC豐BC,AB=4.

若△力BC為等腰三角形,則AC=AB或AB=BC.

0A=1.0C=c=-3a,OB=3,

AC=70A2+0。2=V1+9a2,BC=y/OB2+OC2=V9+9a2.BC=

>JOB2+OC2=V9+9a2-

當(dāng)4C=4B=4時,則,l+9a2=4,

二£1=卓或0=-手(不合題意,舍去).

當(dāng)月B=BC=4時.,則/9+9。2=4,

二£1=?或0=-?(不合題意,舍去).

綜上所述:。值有兩個.

故⑤不正確.

故答案為①③④.

由拋物線與X軸的交點坐標(biāo)判斷系數(shù)4、仄C之間的關(guān)系、二次函數(shù)圖像的特點,進而

對所得結(jié)論進行推斷.

主要考查拋物線的頂點坐標(biāo)、根與二次函數(shù)系數(shù)的關(guān)系、二次函數(shù)圖像特點以及等腰三

角形的定義.

16.【答案】改

25

【知識點】平移的基本性質(zhì)、矩形的性質(zhì)、解直角三角形、旋轉(zhuǎn)的基本性質(zhì)、等邊三角

形的性質(zhì)

【解析】解:?.?四邊形PTQW為矩形,

4P=“=ZT=4PMQ=/.FNG=90°,

由圖形的旋轉(zhuǎn)和平移可知,

PD=DM,NE=QE,

:.RA+AS=BFGC=RS=FG9

3

???tanZ-NFG=

4

設(shè)FN=4,NG=3,則FG=\/FN2+NG2=V42+32=5,

即RT=FN=4,TS=NG=SQ=3,BF+GC=5,

???BC=BF+GC+FG=10,

"S"BC=$矩形PTQM>

^BC-BCsin600=PT-TQ,

ix10x10xy=PTx(3+3),

解得PT=江

6

?:PM=TQ=6,MQ=PT=—;

???PM:MQ=6:*=改,

625

第18頁,共27頁

故答案為:生I

25

根據(jù)旋轉(zhuǎn)、平移前后的圖形全等,設(shè)出FN=4,NG=3,根據(jù)矩形面積和三角形ABC

面積相等,計算出PM和MQ的值即可.

本題主要考查圖形的旋轉(zhuǎn)和平移,矩形的性質(zhì),等邊三角形的性質(zhì)等知識點,利用面積

相等求尸7長度是解題的關(guān)鍵.

17.【答案】x>4x>%>4

4

【知識點】在數(shù)軸上表示不等式的解集、一元一次不等式組的解法

X-2(x-2)<0①

【解析】解:1+2X

------->—X+1(2)

I2一

(I)解不等式①,得%>4;

(口)解不等式②,得X?;:

(ID)把不等式①和②的解集在數(shù)軸上表示出來如下;

111I11J11I①1.

-5-4-3-2-1012345x

(W)原不等式組的解集為x>4.

故答案為:(I)x>4;(n)x>i;(HI)見解答;(W)x>4.

先把不等式組中的各不等式去分母、去括號、移項、合并同類項,再分別求出各不等式

的解集,求出其公共解集即可.

本題考查的是解一元一次不等式組,求不等式的公共解,要遵循以下原則:同大取較大,

同小取較小,小大大小中間找,大大小小解不了.

18.【答案】證明:???四邊形4BCO是平行四邊形,

???0A=0C,0B—0D,

?:E、產(chǎn)分別是。C、0A的中點,

OE=-0C,OF=-0A,

22

:.OE=OF,

OB=OD

在4OBE^W^ODF中,\/.BOE=Z.DOF,

OE=OF

???△OBEGODF(SAS),

BE=DF.

【知識點】平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)

【解析】由平行四邊形的性質(zhì)對角線互相平分得出OA=OC,OB=OD,由中點的意義

得出0E=OF,證明△OBEm4ODF,即可得出結(jié)論.

本題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握平行四邊形的性質(zhì),

證明三角形全等是解題的關(guān)鍵.

19.【答案】解:(1)由題意可得:全班學(xué)生人數(shù)為15+30%=50(人);

則m=50-2-5-15-10=18;

(2)???全班學(xué)生人數(shù)為50人,

二第25和第26個數(shù)據(jù)的平均數(shù)是中位數(shù),

???中位數(shù)落在20<x<25分數(shù)段;

(3)畫樹狀圖如圖:

共有20種等可能的結(jié)果,恰好選到一男一女的結(jié)果有12種,

???恰好選到一男一女的概率為算=|.

【知識點】扇形統(tǒng)計圖、中位數(shù)、頻數(shù)(率)分布表、用列舉法求概率(列表法與樹狀圖法)、

頻數(shù)(率)分布直方圖

【解析】(1)由C分數(shù)段所占比例以及其頻數(shù)求出總數(shù)即可,進而得出根的值:

(2)由中位數(shù)的定義得出中位數(shù)的位置;

(3)畫樹狀圖,共有20種等可能的結(jié)果,恰好選到一男一女的結(jié)果有12種,再根據(jù)概

率公式求解即可.

本題考查了利用列表或樹狀圖求概率、條形統(tǒng)計圖、加權(quán)平均數(shù)以及眾數(shù)等知識;用的

的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.

20.【答案】解:(1)如圖1中,點O即為所求.

(2)如圖2中,點P即為所求.

(3)如圖3中,點。即為所求.

第20頁,共27頁

【知識點】尺規(guī)作圖與一般作圖、解直角三角形、圓周角定理、等腰三角形的性質(zhì)、三

角形的外接圓與外心

【解析】(1)作線段BC,AC的垂直平分線交于點0,點。即為所求.

(2)取格點M,N,連接交4c于點P,連接BP,點尸即為所求.

(3)延長CA交格線于T,取點J,連接TJ,則〃1DT,JT=DT,取點L,K,連接LK

交JT于點小(點W把線段"分成2:3,即7匹:叼=2:3),連接。W交AB于的。,點

。即為所求,

本題考查作圖-應(yīng)用與設(shè)計作圖,等腰三角形的性質(zhì),平行線分線段成比例定理等知識,

解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想解決問題,屬于中考??碱}型.

21.【答案】證明:(1)連接0。,

-.?DA.OF是。。的切線,

?1?DA=DF,

又0D=0D,

???Rt△DAO^Rt△DFO^HL),

/.DOA=Z.DOF=-/LAOF,

2

?:^ABE=-/A0F,

2

:.Z.DOA=乙ABE,

???4BCD是矩形,

:?AB"CD,AD=BC,AB=CD,Z-DABZ-C=90°,

???Z,ABE=乙BEC,

???Z-DOA=乙BEC,

???△D0AwZk8EC(44S),

???EC=OA=-AB=-CD,

22

即點石是CO的中點;

(2)過點尸作FGJ_04垂足為G,

在Rt△FOG中,

sinZ-FOA=—,AO=4=FO,

25

FG_24

OF-25'

???OG=VOF2-FG2=2

25

r>k八二cn28)128

?**BG=OG+?OB=—?F4=—,

2525

在Rt/kBFG中,由勾股定理得,

8昨662+"2=]葭)2+償)2=罷=羨

【知識點】矩形的性質(zhì)、解直角三角形、圓周角定理、切線的性質(zhì)

【解析】(1)要得到E為C。中點,即EC=:CD,而4B=CD,只要得出EC=。4即可,

只要證明小DOA^LBEC,利用切線的性質(zhì)和圓周角定理可得NOCM=乙BEC,利用AAS

可證出三角形全等,進而得出結(jié)論;

(2)通過作高構(gòu)造直角三角形,由sin/OA=|1,AO=4=OF,可求出OG,進而求出

BG,再在直角三角形8FG中由勾股定理求解即可.

本題考查矩形的性質(zhì),圓周角定理,切線的性質(zhì),全等三角形,銳角三角函數(shù)和勾股定

理,掌握矩形的性質(zhì),圓周角定理,切線的性質(zhì)和解直角三角形是正確解答的前提.

22.【答案】解:(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,

則產(chǎn)+b=200

l20fc+b=160

解得仁備

???y=-8%4-320(15<x<30);

(2)設(shè)每天獲得利潤為w元,根據(jù)題意,得

w=(x-10)(-8x+320)

=-8/+400%-3200

=-8(X-25)2+1800,

-8<0,

-8<0,對稱軸為直線x=25,

第22頁,共27頁

x<25時,w隨x的增大而增大.

??,每天銷售利潤率在60%?80%,

...60%w登〈80%,解得:164XW18,

x=18時,w有最大值,最大值為-8x(18-25y+1800=1408(元).

答:每日銷售的最大利潤是1408元;

(3)設(shè)每天獲得利潤為卬元,

w=(%—104-a)(-8%+320)

=-8x2+320%+8(10-a)x-320(10-a)

=-8(x-誓)2+1800+120a+2a2,

-8<0,當(dāng)工=等時,卬有最大值,最大值為1800+120a+2a2,

1800+120a+2a2=1458,

解得:a[=-57(不合題意,舍去),a2=-3,

答:。的值是3.

【知識點】二次函數(shù)的應(yīng)用、一元二次方程的應(yīng)用

【解析】(1)根據(jù)待定系數(shù)法,可得一次函數(shù)解析式;

(2)根據(jù)銷售問題利潤=銷售總價-成本總價列出等式即可求解;

(3)根據(jù)該水果每天獲得的利潤不低于6000元,即可求該水果銷售單價的范圍.

此題考查一次函數(shù)與二次函數(shù)的實際運用,解題的關(guān)鍵是正確的找到題目中的等量關(guān)系

且利用其列出函數(shù)關(guān)系式,注意第2問中x的取值.

23.【答案】(1)證明:如圖1,在矩形A8CO中,乙4=乙。=90°,由翻折得NEFB=

44=90°.

???4DEF+ADFE=90°,Z.CFB+乙DFE=180°-

90°=90°,

???乙DEF=4CFB,

???△EDFFCB.

(2)如圖2,過點A作AF1CD,交CO的延長線于圖1

點凡設(shè)CE=m,CD=x.

-EHJ.AD,

???乙EHD=UHE=90°,

???Z.AED=90°,

A乙EDH=90°-&EH=Z.AEH,

EDH-LAEH,

PH_EH

EH~AH

ADH(5-DH)=22,

解得DH=1或DH=4(不符合題意,舍去),

AH=5-1=4,

???DE='I?+22=V5,AE=yj22+42=2倔

???ZF=ZB=zf=90°,

???四邊形ABCE是矩形,

???AB//CF,

???24ADE+乙CDE=180°=/.ADE+乙BAD+(CDE,

:.Z.ADE=乙BAD=Z.ADF,

???乙F=Z.AED=90°,AD=AD,

.^ADF^^ADE(AAS),

BC=AF=AE=2V5,DF=DE=V5.

由(1)得4DCEFEBA,

CD_CE_DE_4S_1

BEABAE2y[52

???BE=2CDfCF=AB=2CE,

解得m=—,

5

???CE的長為

(3)如圖3,過點7作TQ〃PB,交BC于點Q,以。為圓心,7。長為半徑作OQ.

由翻折得P8=48=12.

???PT=2CT,

???PC=3CT,

???△CTQfCPB,

PB~PC~BC~3

1i

TQ=i?^=ixl2=4,

“33

二點T在半徑為4的。Q的部分圓弧上運動,

第24頁,共27頁

???DT+TQ>DQ,

:.DT>DQ-4,

.?.當(dāng)點7落在。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論