版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省衢州市2025屆高一數學第一學期期末檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,是不共線的向量,,,,若,,三點共線,則實數的值為()A. B.10C. D.52.函數在單調遞減,且為奇函數.若,則滿足的的取值范圍是().A. B.C. D.3.若,則()A. B.C. D.4.如圖,在正方體ABCD﹣A1B1C1D1中,異面直線AC與A1D1所成的角是A.30° B.45°C.60° D.90°5.設實數滿足,函數的最小值為()A. B.C. D.66.已知函數的定義域和值域都是,則()A. B.C.1 D.7.“是”的()條件A.充分不必要 B.必要不充分C.充要 D.既不充分又不必要8.已知正實數滿足,則最小值為A. B.C. D.9.函數f(x)=的零點所在的一個區(qū)間是A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)10.如圖,正方體的棱長為,,是線段上的兩個動點,且,則下列結論錯誤的是A.B.直線、所成的角為定值C.∥平面D.三棱錐的體積為定值二、填空題:本大題共6小題,每小題5分,共30分。11.為了得到函數的圖象,可以將函數的圖象向右平移_________個單位長度而得12.已知冪函數的圖象過點(2,),則___________13.已知函數,,若不等式恰有兩個整數解,則實數的取值范圍是________14.在直角中,三條邊恰好為三個連續(xù)的自然數,以三個頂點為圓心的扇形的半徑為1,若在中隨機地選取個點,其中有個點正好在扇形里面,則用隨機模擬的方法得到的圓周率的近似值為__________.(答案用,表示)15.若函數是定義在上的嚴格增函數,且對一切x,滿足,則不等式的解集為___________.16.函數的最小值為_________________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知集合A={x|﹣2≤x≤5},B={x|m﹣6≤x≤2m﹣1}(1)當m=﹣1時,求A∩B;(2)若集合B是集合A的子集,求實數m的取值范圍18.(1)若是的根,求的值(2)若,,且,,求的值19.已知函數f(x)=(1)若f(x)有兩個零點x1、x2,且x1(2)若命題“?x∈R,fx≤-720.已知函數的部分圖象如圖所示.(1)求的解析式;(2)把圖象上所有點的橫坐標縮小到原來的,再向左平移個單位長度,向下平移1個單位長度,得到的圖象,求的單調區(qū)間.21.已知函數,它的部分圖象如圖所示.(1)求函數的解析式;(2)當時,求函數的值域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由向量的線性運算,求得,根據三點共線,得到,列出方程組,即可求解.【詳解】由,,可得,因為,,三點共線,所以,所以存在唯一的實數,使得,即,所以,解得,.故選:A.2、D【解析】由已知中函數的單調性及奇偶性,可將不等式化為,解得答案【詳解】解:由函數為奇函數,得,不等式即為,又單調遞減,所以得,即,故選:D.3、A【解析】利用作為分段點進行比較,從而確定正確答案.【詳解】,所以.故選:A4、B【解析】在正方體ABCD﹣A1B1C1D1中,AC∥A1C1,所以為異面直線AC與A1D1所成的角,由此能求出結果.【詳解】因為AC∥A1C1,所以為異面直線AC與A1D1所成的角,因為是等腰直角三角形,所以.故選:B【點睛】本題考查異面直線所成的角的求法,屬于基礎題.5、A【解析】將函數變形為,再根據基本不等式求解即可得答案.詳解】解:由題意,所以,所以,當且僅當,即時等號成立,所以函數的最小值為.故選:A【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數;(2)“二定”就是要求和的最小值,必須把構成和的二項之積轉化成定值;要求積的最大值,則必須把構成積的因式的和轉化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方6、A【解析】分和,利用指數函數的單調性列方程組求解.【詳解】當時,,方程組無解當時,,解得故選:A.7、A【解析】根據充分必要條件的定義判斷【詳解】若x=1,則x2-4x+3=0,是充分條件,若x2-4x+3=0,則x=1或x=3,不是必要條件.故選:A.8、A【解析】由題設條件得,,利用基本不等式求出最值【詳解】由已知,,所以當且僅當時等號成立,又,所以時取最小值故選A【點睛】本題考查據題設條件構造可以利用基本不等式的形式,利用基本不等式求最值9、B【解析】因為函數f(x)=2+3x在其定義域內是遞增的,那么根據f(-1)=,f(0)=1+0=1>0,那么函數的零點存在性定理可知,函數的零點的區(qū)間為(-1,0),選B考點:本試題主要考查了函數零點的問題的運用點評:解決該試題的關鍵是利用零點存在性定理,根據區(qū)間端點值的乘積小于零,得到函數的零點的區(qū)間10、B【解析】在A中,∵正方體∴AC⊥BD,AC⊥,∵BD∩=B,∴AC⊥平面,∵BF?平面,∴AC⊥BF,故A正確;在B中,異面直線AE、BF所成的角不為定值,因為當F與重合時,令上底面頂點為O,點E與O重合,則此時兩異面直線所成的角是;當E與重合時,此時點F與O重合,則兩異面直線所成的角是,此二角不相等,故異面直線AE、BF所成的角不為定值.故B錯誤在C中,∵EF∥BD,BD?平面ABCD,EF?平面ABCD,∴EF∥平面ABCD,故C正確;在D中,∵AC⊥平面,∴A到平面BEF的距離不變,∵B到EF的距離為1,,∴△BEF的面積不變,∴三棱錐A-BEF的體積為定值,故D正確;點睛:解決此類題型的關鍵是結合空間點線面的位置關系一一檢驗.二、填空題:本大題共6小題,每小題5分,共30分。11、(答案不唯一);【解析】由于,再根據平移求解即可.【詳解】解:由于,故將函數的圖象向右平移個單位長度可得函數圖像.故答案為:12、【解析】由冪函數所過的點求的解析式,進而求即可.【詳解】由題設,若,則,可得,∴,故.故答案為:13、.【解析】因為,所以即的取值范圍是.點睛:對于方程解的個數(或函數零點個數)問題,可利用函數的值域或最值,結合函數的單調性、草圖確定其中參數范圍.從圖象的最高點、最低點,分析函數的最值、極值;從圖象的對稱性,分析函數的奇偶性;從圖象的走向趨勢,分析函數的單調性、周期性等14、【解析】由題意得的三邊分別為則由可得,所以,三角數三邊分別為,因為,所以三個半徑為的扇形面積之和為,由幾何體概型概率計算公式可知,故答案為.【方法點睛】本題題主要考查“面積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與面積有關的幾何概型問題關鍵是計算問題的總面積以及事件的面積;幾何概型問題還有以下幾點容易造成失分,在備考時要高度關注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本事件對應的區(qū)域測度把握不準導致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導致錯誤.15、【解析】根據題意,將問題轉化為,,再根據單調性解不等式即可得答案.【詳解】解:因為函數對一切x,滿足,所以,,令,則,即,所以等價于,因為函數是定義在上的嚴格增函數,所以,解得所以不等式的解集為故答案為:16、【解析】利用同角三角函數的基本關系,化簡函數的解析式,配方利用二次函數的性質,求得y的最小值【詳解】y=sin2x﹣2cosx+2=3﹣cos2x﹣2cosx=﹣(cosx+1)2+4,故當cosx=1時,y有最小值等于0,故答案為0【點睛】本題考查同角三角函數的基本關系的應用,二次函數的圖象與性質,把函數配方是解題的關鍵三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)A∩B=?;(2)(﹣∞,﹣5)【解析】(1)由m=﹣1求得B,再利用交集運算求解.(2)根據B?A,分B=?和B≠?兩種求解討論求解.【詳解】(1)m=﹣1時,B={x|﹣7≤x≤﹣3};∴A∩B=?;(2)∵B?A;∴①B=?時,m﹣6>2m﹣1;∴m<﹣5;②B≠?時,,此不等式組無解;∴m的取值范圍是(﹣∞,﹣5)【點睛】本題主要考查集合的基本運算以及集合基本關系的應用,還考查了分類討論的思想,屬于基礎題.18、(1);(2)【解析】(1)先求出,再通過誘導公式及切化弦化簡原式后再代值即可;(2)通過角的范圍及已知的三角函數值求出和,再運用正弦的兩角差的公式計算即可.【詳解】(1)方程解得或,因為為其解,所以.則原式由于,所以原式.(2)因為,所以,又因為,所以,因為,,可得,又,可得,而.19、(1)a=±1;(2)-2,2.【解析】(1)由已知條件可得Δ>0,結合韋達定理可求得實數a(2)由已知可知,命題“?x∈R,x2-2ax+8-a2>0【小問1詳解】解:由已知可得Δ=4a2-41-由韋達定理可得x1+x所以,x1-x2故a=±1.【小問2詳解】解:由題意可知,?x∈R,x則判別式Δ'=4a所以,實數a的取值范圍是-2,2.20、(1)(2)單調遞減區(qū)間為,單調遞增區(qū)間為【解析】(1)根據最值求的值;根據周期求的值;把點代入求的值.(2)首先根據圖象的變換求出的解析式,然后利用整體代入的方法即可求出的單調區(qū)間.【小問1詳解】由圖可知,所以,.又,所以,因為,所以.因為,所以,即,又|,得,所以.【小問2詳解】由題意得,由,得,故的單調遞減區(qū)間為,由,得,故的單調遞增區(qū)間為.21、(1);(2).【解析】(1)依題意,則,將點的坐標代入函數的解析式可得,故,函數解析式為.(2)由題意可得,結合三角函數的性質可得函數的值域為.試題解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年校園門衛(wèi)人員勞動合同編制指南3篇
- 2025年度殘疾人勞動合同簽訂中的殘疾人心理關愛與職業(yè)適應3篇
- 2024藥店負責人任期藥店品牌形象塑造聘用合同3篇
- 二零二五年度版權許可合同許可范圍和許可費用6篇
- 年度新型鋁基軸瓦材料市場分析及競爭策略分析報告
- 年度密封用填料及類似品競爭策略分析報告
- 二零二五年度精裝修住宅租賃管理服務合同3篇
- 2024-2025學年高中歷史第五單元近現(xiàn)代中國的先進思想第22課孫中山的民主追求課后作業(yè)含解析岳麓版必修3
- 2025年度智能交通系統(tǒng)建設合同6篇
- 二零二五年度餐館員工餐飲服務規(guī)范合同3篇
- 參考新醫(yī)大-中央財政支持地方高校發(fā)展專項資金建設規(guī)
- 《中醫(yī)內科學關格》課件
- 2024年中國PCB板清洗劑市場調查研究報告
- 《紙管》規(guī)范要求
- 【數學】2021-2024年新高考數學真題考點分布匯
- 2024年育嬰師合同協(xié)議書
- 大班健康教案及教學反思《蜈蚣走路》
- 生活妝課件教學課件
- 2023-2024學年廣東省廣州市番禺區(qū)八年級(上)期末英語試卷
- 山東省房屋市政工程安全監(jiān)督機構人員業(yè)務能力考試題庫-上(單選題)
- 松下-GF2-相機說明書
評論
0/150
提交評論