版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上學期高一年級期中考試數(shù)學試題時量:120分鐘 滿分:150分 注意事項: 1.本試卷分為試題卷和答題卡,答題前請先將自己的學校、班級、姓名、考號填寫在答題卡上對應(yīng)的位置。選擇題的答案請用2B鉛筆以正確的填涂方式填寫在答題卡上對應(yīng)的位置,非選擇題請用黑色簽字筆將答案填寫在相應(yīng)的答題欄內(nèi),寫在試題卷上的答案無效。一、選擇題(共12小題,每題5分,共60分)1.設(shè)全集U={1,2,3,4,5},集合A={1,2,3},B={2,3,4},則下列結(jié)論中正確的是()A.A?B B.A∩B={2} C.A∪B={1,2,3,4,5} D.A∩(?UB)={1}2.已知函數(shù)f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(\r(x),x≥2,,3-x,x<2.))則f(f(-1))的值為()A. B.2 C.1 D.03.下列函數(shù)中既是奇函數(shù),又在區(qū)間(0,+)上單調(diào)遞增的是() A. B. C. D.4.函數(shù)的定義域為() A. B. C. D.5.三個數(shù)的大小順序為() A. B. C. D.6.函數(shù),則k的取值范圍是() A. B. C. D.7.已知函數(shù)y=f(x)是偶函數(shù),且函數(shù)y=f(x-2)在區(qū)間[0,2]上是單調(diào)減函數(shù),則()A.f(-1)<f(2)<f(0) B.f(-1)<f(0)<f(2)C.f(0)<f(-1)<f(2) D.f(2)<f(-1)<f(0)8.已知a>b,函數(shù)f(x)=(x-a)(x-b)的圖象如圖(左),則函數(shù)g(x)=loga(x+b)的圖象可能為()9.已知函數(shù)f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(-x2+2ax,x≤1,,2a-1x-3a+6,x>1,))若f(x)在(-∞,+∞)上是增函數(shù),則實數(shù)a的取值范圍是()A.eq\b\lc\(\rc\](\a\vs4\al\co1(\f(1,2),1)) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),+∞))C.[1,+∞) D.[1,2]10.已知函數(shù)是定義在R上的奇函數(shù),若對于任意給定的不等實數(shù)、,不等式恒成立,則不等式的解集為() A.B.C.D.11.已知函數(shù),對任意的實數(shù),,,關(guān)于方程的的解集不可能是()A. B. C. D.12.設(shè)函數(shù),其中表示中的最小者.下列說法錯誤的是() A.函數(shù)為偶函數(shù) B.若時,有 C.若時, D.若時二、填空題(共4小題,每題5分,共20分)13.若集合=.14.某商場宣傳在節(jié)假日對顧客購物實行一定的優(yōu)惠,商場規(guī)定:①如一次購物不超過200元,不予以折扣;②如一次購物超過200元,但不超過500元,按標價予以九折優(yōu)惠;③如一次購物超過500元的,其中500元給予九折優(yōu)惠,超過500元的給予八五折優(yōu)惠.某人兩次去購物,分別付款176元和432元,如果他只去一次購買同樣的商品,則應(yīng)付款元(結(jié)果保留到小數(shù)點后一位).15.設(shè)P、Q是兩個非空集合,定義集合間的一種運算“⊙”:P⊙Q={x|x∈P∪Q,且x?P∩Q},如果P={y|y=eq\r(4-x2)},Q={y|y=4x,x>0},則P⊙Q=.16.已知y=f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)是二次函數(shù),其圖象與x軸交于A(1,0)、B(3,0),與y軸交于C(0,6).若方程f(x)-2a+2=0有四個不同的實數(shù)根,則a的取值范圍是.三、解答題(共6大題,共70分)17.(10分)(1)求值:;(2)若,求的值.18.(12分)已知函數(shù)f(x)=eq\f(1-2x,2x+1).(1)判斷函數(shù)f(x)的奇偶性并證明;(2)當x∈(1,+∞)時,求函數(shù)f(x)的值域.19.(12分)設(shè)全集是實數(shù)集R,集合A={x|y=loga(x-1)+eq\r(3-x)}(a>0且a≠1),B={x|2x+m≤0}.(1)當m=-4時,求A∩B和A∪B;(2)若(?RA)∩B=B,求實數(shù)m的取值范圍.20.(12分)已知f(x)=ln(ex+a)是定義域為R的奇函數(shù),g(x)=λf(x).(1)求實數(shù)a的值;(2)若g(x)≤xlog2x在x∈[2,3]時恒成立,求λ的取值范圍.21.(12分)一片森林原面積為a,計劃每年砍伐一些樹,且每年砍伐面積的百分比相等,計劃砍伐到面積一半時,所用時間是10年,為保護生態(tài)環(huán)境,森林面積至少要保留原面積的eq\f(1,4),已知到今年為止,森林剩余面積為原來的eq\f(\r(2),2).(1)求每年砍伐面積的百分比;(2)到今年為止,該森林已砍伐了多少年?(3)求今后最多能砍伐多少年?22.(12分)已知f(x)=(ex-a)2+(-a)2(a≥0).(1)將f(x)表示成u(其中u=)的函數(shù);(2)求f(x)的最小值.石首市2019—2020學年上學期高一年級期中數(shù)學答案1--12DBCABDCCDBAD13.14.582.615.[0,1]∪(2,+∞)16.0<a<417.解:(1)原式(4分)(2)若,則,即(5分),且因為所以(7分)(9分)所以(10分)18.解:(1)函數(shù)f(x)是奇函數(shù),f(-x)=eq\f(1-2-x,2-x+1)=eq\f(1-\f(1,2x),\f(1,2x)+1)=eq\f(2x-1,1+2x)=-f(x).所以f(x)是奇函數(shù).(5分)(2)令2x=t,則g(t)=eq\f(1-t,t+1)=-1+eq\f(2,t+1).因為x∈(1,+∞),所以t>2,因此t+1>3,0<eq\f(2,t+1)<eq\f(2,3).所以-1<g(t)<-eq\f(1,3),所以f(x)的值域是eq\b\lc\(\rc\)(\a\vs4\al\co1(-1,-\f(1,3))).(12分)19.解:(1)由eq\b\lc\{\rc\(\a\vs4\al\co1(x-1>0,,3-x≥0,))得1<x≤3,即集合A=(1,3];(2分)由2x-4≤0,得2x≤22,x≤2,即集合B=(-∞,2].(4分)故A∩B=(1,2],A∪B=(-∞,3].(6分)(2)?RA={x|x>3,或x≤1}.∵(?RA)∩B=B,∴B??RA.①若B=?,則m≥0;(8分)②若B≠?,則m<0,∴2x≤-m,∴x≤log2(-m).(10分)∵B??RA,∴l(xiāng)og2(-m)≤1,即log2(-m)≤log22,因此0<-m≤2,-2≤m<0.綜上所述,實數(shù)m的取值范圍是[-2,+∞).(12分)20.解:(1)因為函數(shù)f(x)=ln(ex+a)是定義域為R的奇函數(shù).(2分)所以f(0)=0,即ln(1+a)=0,得a=0.(4分)對于函數(shù)f(x)=lnex=x,顯然有f(-x)=-f(x),故函數(shù)f(x)=x是奇函數(shù),所以實數(shù)a的值為0.(6分)(2)由(1)知f(x)=x,g(x)=λx,則λx≤xlog2x在x∈[2,3]時恒成立.即λ≤log2x在x∈[2,3]上恒成立.(8分)∵函數(shù)y=log2x在x∈[2,3]時的最小值為log22=1,(10分)∴λ≤1.(12分)21.解:(1)設(shè)每年砍伐面積的百分比為x(0<x<1).則a(1-x)10=eq\f(1,2)a,即(1-x)10=eq\f(1,2),解得x=1-eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up15(eq\f(1,10)).(4分)(2)設(shè)到今年為止,該森林已砍伐了n年,則a(1-x)n=eq\f(\r(2),2)a,即eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up15(eq\f(n,10))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up15(eq\f(1,2)),eq\f(n,10)=eq\f(1,2),n=5.故到今年為止,該森林已砍伐了5年.(8分)(3)設(shè)從今年開始,以后砍伐了n年,則n年后剩余面積為eq\f(\r(2),2)a(1-x)n,令eq\f(\r(2),2)a(1-x)n≥eq\f(1,4)a,即(1-x)n≥eq\f(\r(2),4),eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up15(eq\f(n,10))≥eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))eq\s\up15(eq\f(3,2)),eq\f(n,10)≤eq\f(3,2),n≤15.故今后最多還能砍伐15年.(12分)22.解:(1)將f(x)展開重新配方得,f(x)=(ex+e-x)2-2a(ex+e-x)+2a2-2.(2分)令u=eq\f(ex+e-x,2),得g(u)=4u2-4au+2a2-2(u≥1).(6分)(2)∵f(u)的對稱軸是u=eq\f(a,2),a≥0,∴當0≤
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024原油現(xiàn)貨交易與跨境運輸合作協(xié)議3篇
- 2024年醫(yī)院中央空調(diào)系統(tǒng)消毒防疫與檢修合同3篇
- 2024年大理石大板進口代理服務(wù)合同書3篇
- 2024年度種子采購與綠色農(nóng)業(yè)發(fā)展合同范本3篇
- 2024年度中小企業(yè)員工入股分紅協(xié)議范本3篇
- 2024至2030年啤酒瓶托瓶盤項目投資價值分析報告
- 2024至2030年中國VS絲網(wǎng)行業(yè)投資前景及策略咨詢研究報告
- 2024-2030年中國鋁型材網(wǎng)絡(luò)機柜項目可行性研究報告
- 2024-2030年中國金屬型風壓式百葉窗換氣扇資金申請報告
- 2024-2030年中國車輛實心輪胎市場競爭格局及投資發(fā)展前景分析報告
- 公寓de全人物攻略本為個人愛好而制成如需轉(zhuǎn)載注明信息
- 減少巡回護士手術(shù)中外出次數(shù)品管圈匯報書模板課件
- 5分鐘安全五人小品劇本
- 售后服務(wù)人員培訓課件
- 福建省福州市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細及行政區(qū)劃代碼
- 《高中語文文言斷句》一等獎優(yōu)秀課件
- 大學生創(chuàng)新思維教學課件全套教學課件
- 教育研究導論首都師范
- 象棋比賽積分編排表
- 工會新聞的寫作培訓講義(共36頁).ppt
- [爆笑小品校園劇本7人]爆笑小品校園劇本
評論
0/150
提交評論